...
首页> 外文期刊>Applied Surface Science >Exploring driving forces for length growth in graphene nanoribbons during chemical vapor deposition of hydrocarbons on Ge(001) via kinetic Monte Carlo simulations
【24h】

Exploring driving forces for length growth in graphene nanoribbons during chemical vapor deposition of hydrocarbons on Ge(001) via kinetic Monte Carlo simulations

机译:通过动力学蒙特卡罗模拟探索石墨烯纳米石墨烯纳米纳米长度的推动力

获取原文
获取原文并翻译 | 示例

摘要

Graphene grown slowly on Ge(0 0 1) using chemical vapor deposition of hydrocarbons leads to high-aspect ratio graphene nanoribbons with smooth edges and a technologically relevant band gap at room temperature; however, the driving forces leading to one-dimensional growth of such graphene crystals are not well understood. Here, we combine a lattice kinetic Monte Carlo approach based on steps in graphene growth and experimental measurements to study the growth of graphene nanoribbons via chemical vapor deposition on Ge(0 0 1). To identify potential reasons for growth of graphene as anisotropic ribbons, we study the impact of anisotropy in various growth parameters on the resulting graphene crystals. Comparing our model with experimental measurements indicates that anisotropy in the stabilization of a graphene precursor species bound to the graphene edge is the most likely reason why high aspect ratio graphene ribbons with smooth edges grow on Ge(0 0 1). Using the growth model developed here, we reproduce experimental trends in the synthesis of graphene nanoribbons on Ge(001) and arrive atan intuitive picture for their growth. These insights shed light on the driving forces governing this highly anisotropic regime of crystal growth.
机译:石墨烯在Ge(0 0 1)上缓慢生长,使用烃的化学气相沉积导致高纵横比石墨烯纳米与室温的光滑边缘和技术相关的带隙;然而,导致这种石墨烯晶体的一维生长的驱动力尚不清楚。这里,基于石墨烯生长和实验测量的步骤结合了晶格动力学蒙特卡罗方法,以研究Ge(0 0 1)上的化学气相沉积石墨烯纳米的生长。为了确定石墨烯生长作为各向异性丝带的潜在原因,我们研究各向异性在所得石墨烯晶体中各向异性的影响。将模型与实验测量进行比较表明,各向异性在与石墨烯边缘结合的石墨烯前体物种中是最可能的原因,为什么具有光滑边缘的高纵横比石墨烯带在GE(0 0 1)上生长。使用此处开发的生长模型,我们在GE(001)上的石墨烯纳米纳米纳米合成中的实验趋势再现,并向atan直观的图像进行增长。这些见解揭示了控制这种高度各向异性的晶体生长制度的驱动力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号