...
首页> 外文期刊>Applied Surface Science >Pyridylphenylene dendrons immobilized on the surface of chemically modified magnetic silica as efficient stabilizing molecules of Pd species
【24h】

Pyridylphenylene dendrons immobilized on the surface of chemically modified magnetic silica as efficient stabilizing molecules of Pd species

机译:固定在化学改性的磁性二氧化硅表面上的吡啶基苯的树枝状有效稳定分子的Pd物种

获取原文
获取原文并翻译 | 示例
           

摘要

Rigid pyridylphenylene dendrons were shown to successfully function as capping molecules for stabilization of both magnetite and Pd nanoparticles (NPs) to form hydrophobic, magnetically recoverable catalysts. However, syntheses in colloidal solutions require large amounts of dendrons and are difficult to scale up. Here, we developed a strategy for the nanocomposite formation by immobilization of the pyridylphenylene dendrons (D) on magnetic silica (Fe3O4-SiO2, MS) surface via the formation of ether or amide bonds, depending on the structure of flexible linkers on the MS surface and dendron focal groups. Both approaches allow attachment of small amounts of the dendrons with high surface coverage and impart amphiphilicity to the final composite. After the binding to the MS surface, the dendron pyridine moieties readily complex with Pd acetate, leading to a "cocktail" of Pd2+ and Pd-0 species (the latter forming Pd NPs) due to partial reduction by composite functional groups. The MS-D-Pd nanocomposites were tested in the model Suzuki-Miyaura cross-coupling reaction of 4-Br-anisole and phenylboronic acid to evaluate their performance in hydrophilic conditions. MS-D-Pd demonstrated excellent performance, even at a very small amount of the catalyst, which is assigned to exceptional stabilization by dendritic ligands, allowing prevention of the metal leaching and preservation of catalytic properties upon magnetic separation. The immobilization of rigid hydrophobic dendrons on the hydrophilic magnetic support may allow one to extend the scope of catalytic reactions due to catalyst amphiphilicity.
机译:显示刚性吡啶基苯基丁烯树枝状树枝状树枝状鳞片成功用作覆盖分子,用于稳定磁铁矿和Pd纳米颗粒(NPS)以形成疏水性的磁力可恢复的催化剂。然而,胶体解决方案的合成需要大量的树枝,并且难以扩大。在此,通过在MS表面上的柔性接头的结构上,通过形成乙醚或酰胺键在磁性二氧化硅(Fe3O4-SiO 2,MS)表面上固定吡啶基苯二烯(Fe3O4-SiO 2,MS)表面来制定纳米复合材料的策略。根据MS表面上的柔性接头的结构,通过形成醚或酰胺键和树木局灶性群体。两种方法允许用高表面覆盖和赋予最终复合材料的高表面覆盖和赋予两亲性的少量树枝状。在与MS表面的结合后,DENDRON吡啶部分与PD乙酸盐易于复合,导致PD2 +和PD-0种的“鸡尾酒”(后者形成PD NPS),由于复合官能团是部分还原。在4- Br-苯甲醚和苯基硼酸的模型Suzuki-Miyaura交叉偶联反应中测试MS-D-Pd纳米复合材料,以评估它们在亲水性条件下的性能。 MS-D-PD甚至以非常少量的催化剂显示出优异的性能,其被树枝状配体分配到卓越的稳定性,允许防止金属浸出并在磁性分离时保存催化性能。在亲水性磁性载体上的刚性疏水性树形的固定可以允许人们引起催化剂两亲性引起的催化反应范围。

著录项

  • 来源
    《Applied Surface Science》 |2019年第15期|865-873|共9页
  • 作者单位

    Russian Acad Sci AN Nesmeyanov Inst Organoelement Cpds 28 Vavilov St Moscow 119991 Russia;

    Russian Acad Sci AN Nesmeyanov Inst Organoelement Cpds 28 Vavilov St Moscow 119991 Russia;

    Indiana Univ Dept Chem 800 E Kirkwood Av Bloomington IN 47405 USA;

    Russian Acad Sci AN Nesmeyanov Inst Organoelement Cpds 28 Vavilov St Moscow 119991 Russia;

    Tver State Tech Univ Dept Biotechnol & Chem 22 A Nikitina St Tver 170026 Russia;

    Tver State Tech Univ Dept Biotechnol & Chem 22 A Nikitina St Tver 170026 Russia;

    Russian Acad Sci AN Nesmeyanov Inst Organoelement Cpds 28 Vavilov St Moscow 119991 Russia;

    Indiana Univ Dept Biol 1001 E Third St Bloomington IN 47405 USA;

    Indiana Univ Dept Chem 800 E Kirkwood Av Bloomington IN 47405 USA;

    Indiana Univ Dept Chem 800 E Kirkwood Av Bloomington IN 47405 USA;

    Tver State Tech Univ Dept Biotechnol & Chem 22 A Nikitina St Tver 170026 Russia;

    Russian Acad Sci AN Nesmeyanov Inst Organoelement Cpds 28 Vavilov St Moscow 119991 Russia|Indiana Univ Dept Chem 800 E Kirkwood Av Bloomington IN 47405 USA|King Abdulaziz Univ Fac Sci Dept Phys POB 80303 Jeddah 21589 Saudi Arabia;

    Russian Acad Sci AN Nesmeyanov Inst Organoelement Cpds 28 Vavilov St Moscow 119991 Russia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Magnetic nanoparticles; Silica surface; Dendron; Palladium; Suzuki-Miyaura cross-coupling;

    机译:磁性纳米粒子;二氧化硅表面;树枝状;钯;铃木 - 宫武拉交叉耦合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号