...
首页> 外文期刊>Applied Surface Science >Pyridylphenylene dendrons immobilized on the surface of chemically modified magnetic silica as efficient stabilizing molecules of Pd species
【24h】

Pyridylphenylene dendrons immobilized on the surface of chemically modified magnetic silica as efficient stabilizing molecules of Pd species

机译:固定在化学修饰的磁性二氧化硅表面上的吡啶基亚苯基树枝状分子作为有效稳定的Pd分子

获取原文
获取原文并翻译 | 示例
           

摘要

Rigid pyridylphenylene dendrons were shown to successfully function as capping molecules for stabilization of both magnetite and Pd nanoparticles (NPs) to form hydrophobic, magnetically recoverable catalysts. However, syntheses in colloidal solutions require large amounts of dendrons and are difficult to scale up. Here, we developed a strategy for the nanocomposite formation by immobilization of the pyridylphenylene dendrons (D) on magnetic silica (Fe3O4-SiO2, MS) surface via the formation of ether or amide bonds, depending on the structure of flexible linkers on the MS surface and dendron focal groups. Both approaches allow attachment of small amounts of the dendrons with high surface coverage and impart amphiphilicity to the final composite. After the binding to the MS surface, the dendron pyridine moieties readily complex with Pd acetate, leading to a "cocktail" of Pd2+ and Pd-0 species (the latter forming Pd NPs) due to partial reduction by composite functional groups. The MS-D-Pd nanocomposites were tested in the model Suzuki-Miyaura cross-coupling reaction of 4-Br-anisole and phenylboronic acid to evaluate their performance in hydrophilic conditions. MS-D-Pd demonstrated excellent performance, even at a very small amount of the catalyst, which is assigned to exceptional stabilization by dendritic ligands, allowing prevention of the metal leaching and preservation of catalytic properties upon magnetic separation. The immobilization of rigid hydrophobic dendrons on the hydrophilic magnetic support may allow one to extend the scope of catalytic reactions due to catalyst amphiphilicity.
机译:刚性吡啶基亚苯基树枝状化合物被成功地用作封端分子,用于稳定磁铁矿和Pd纳米颗粒(NPs),从而形成疏水的,可磁回收的催化剂。但是,胶体溶液中的合成需要大量的树枝状分子,并且难以扩大规模。在这里,我们开发了一种策略,通过将吡啶基亚苯基树枝状化合物(D)固定在磁性二氧化硅(Fe3O4-SiO2,MS)表面上,通过形成醚或酰胺键来形成纳米复合物,具体取决于MS表面上柔性接头的结构和树突焦点小组。两种方法都允许以高的表面覆盖率附着少量的树枝状分子,并使最终的复合材料具有两亲性。结合到MS表面后,树枝状吡啶部分容易与乙酸Pd络合,由于复合官能团的部分还原,导致Pd2 +和Pd-0物种(后者形成Pd NP)“混合”。 MS-D-Pd纳米复合材料在4-Br-茴香醚和苯基硼酸的Suzuki-Miyaura模型交叉偶联反应中进行了测试,以评估其在亲水条件下的性能。 MS-D-Pd即使在极少量的催化剂下也表现出优异的性能,这被树枝状配体赋予了出色的稳定性,从而可以防止金属浸出并在磁分离时保持催化性能。由于催化剂两亲性,将刚性疏水树突固定在亲水磁性载体上可以使人们扩大催化反应的范围。

著录项

  • 来源
    《Applied Surface Science》 |2019年第15期|865-873|共9页
  • 作者单位

    Russian Acad Sci, AN Nesmeyanov Inst Organoelement Cpds, 28 Vavilov St, Moscow 119991, Russia;

    Russian Acad Sci, AN Nesmeyanov Inst Organoelement Cpds, 28 Vavilov St, Moscow 119991, Russia;

    Indiana Univ, Dept Chem, 800 E Kirkwood Av, Bloomington, IN 47405 USA;

    Russian Acad Sci, AN Nesmeyanov Inst Organoelement Cpds, 28 Vavilov St, Moscow 119991, Russia;

    Tver State Tech Univ, Dept Biotechnol & Chem, 22 A Nikitina St, Tver 170026, Russia;

    Tver State Tech Univ, Dept Biotechnol & Chem, 22 A Nikitina St, Tver 170026, Russia;

    Russian Acad Sci, AN Nesmeyanov Inst Organoelement Cpds, 28 Vavilov St, Moscow 119991, Russia;

    Indiana Univ, Dept Biol, 1001 E Third St, Bloomington, IN 47405 USA;

    Indiana Univ, Dept Chem, 800 E Kirkwood Av, Bloomington, IN 47405 USA;

    Indiana Univ, Dept Chem, 800 E Kirkwood Av, Bloomington, IN 47405 USA;

    Tver State Tech Univ, Dept Biotechnol & Chem, 22 A Nikitina St, Tver 170026, Russia;

    Russian Acad Sci, AN Nesmeyanov Inst Organoelement Cpds, 28 Vavilov St, Moscow 119991, Russia|Indiana Univ, Dept Chem, 800 E Kirkwood Av, Bloomington, IN 47405 USA|King Abdulaziz Univ, Fac Sci, Dept Phys, POB 80303, Jeddah 21589, Saudi Arabia;

    Russian Acad Sci, AN Nesmeyanov Inst Organoelement Cpds, 28 Vavilov St, Moscow 119991, Russia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Magnetic nanoparticles; Silica surface; Dendron; Palladium; Suzuki-Miyaura cross-coupling;

    机译:磁性纳米粒子;二氧化硅表面;Dendron;钯;Suzuki-Miyaura交叉耦合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号