...
首页> 外文期刊>Applied Surface Science >Rational design of ZnFe_2O_4/g-C_3N_4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance
【24h】

Rational design of ZnFe_2O_4/g-C_3N_4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance

机译:ZnFe_2O_4 / g-C_3N_4纳米复合材料的合理设计,以增强光芬顿反应和超级电容器的性能

获取原文
获取原文并翻译 | 示例

摘要

The construction of heterostructure with better visible light active photocatalyst and enriched charge storage electrode material for supercapacitor has plays an important role in the field of energy and environmental remediation research. The facile sol-gel followed calcination method has been adopted to synthesize the effective heterostructure (ZnFe2O4/g-C3N4) nanocomposite. The physio chemical characteristics of the synthesized nanomaterials were examined through different analytical techniques. The heterostructure formation between ZnFe2O4 and g-C3N4 was confirmed by high resolution transmission electron microscope. Compared to the pure ZnFe2O4 and g-C3N4, the composite catalyst shows the enhanced photocatalytic activity and high electrochemical specific capacitance of 103 F/g at 10 A/g of current density due to the synergistic effect between the nanoparticles. The photocatalytic active radicals and possible reaction mechanism was demonstrated by elemental trapping experiment which shows the OH* radicals plays the major role and O-2 contribute the minor role for degradation process. The augmented capacitance of the composite electrode suggests that the improved ion diffusion rate and increased active redox site for pseudo capacitive behavior. The 95% of degradation efficiency was maintained after 5 cycles of photocatalytic activity under direct sunlight and 94% of capacitance retaining at current density of 10 A/g after 500 cycles demonstrate the stability of the composite catalyst. Hence, this heterostructure could be used as an auspicious candidate for energy and environmental remediation application for practical use.
机译:具有更好的可见光活性光催化剂和用于超级电容器的富电荷存储电极材料的异质结构的构建在能源和环境修复研究领域中起着重要的作用。采用了简便的溶胶-凝胶法煅烧法合成了有效的异质结构(ZnFe2O4 / g-C3N4)纳米复合材料。通过不同的分析技术检查了合成纳米材料的理化特性。 ZnFe2O4和g-C3N4之间的异质结构形成已通过高分辨率透射电子显微镜确认。与纯ZnFe2O4和g-C3N4相比,由于纳米颗粒之间的协同作用,复合催化剂在103 A / g的电流密度下显示出增强的光催化活性和103 F / g的高电化学比电容。通过元素捕获实验证明了光催化活性自由基和可能的反应机理,表明OH *自由基起主要作用,而O-2在降解过程中起次要作用。复合电极的增加的电容表明,改善的离子扩散速率和增加的伪氧化行为的活性氧化还原位点。在阳光直射下进行5次光催化活性后,降解效率保持95%;在500次循环后,电流密度为10 A / g时,保持94%的电容,证明了复合催化剂的稳定性。因此,该异质结构可以用作能源和环境修复应用中的吉利候选物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号