...
首页> 外文期刊>Applied Surface Science >A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications
【24h】

A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications

机译:适用于高能量-功率密度Zn-离子混合超级电容器应用的耐用二维多孔碳纳米片状阴极

获取原文
获取原文并翻译 | 示例

摘要

The exploration of next-generation energy storage devices with long cycle life, superior stability, large specific capacity, ultrahigh power and energy density have attracted increased interests in recent years. However, it still remains a tremendous challenge for conventional energy storage devices to achieve the merits of both batteries and supercapacitors. Herein, we present a convenient but effective approach to synthesize porous carbon nanoflakes (PCNFs) that process high specific surface area and tunable pore size distributions. We found the amount of activating reagent has a profound influence on the morphology and textural structure of the resulting products, and a chemical etching process to transform nanocages into nanoflakes has been proposed. Importantly, Zn-ion hybrid supercapacitor with PCNFs as cathode and Zn foil as anode can overcome the disadvantages of poor rate capability and low energy density for the conventional batteries and supercapacitors. The optimized PCNFs based Zn-ion hybrid supercapacitor can deliver an ultrahigh specific capacitance, excellent rate performance, outstanding cycling stability, and impressive energy density. The facile synthetic procedure combined with its excellent electrochemical performances endow the present devices a huge possibility to be used in future electrochemical energy storage systems.
机译:近年来,对具有长循环寿命,优异的稳定性,大比容量,超高功率和能量密度的下一代储能装置的探索引起了越来越多的兴趣。然而,对于常规的能量存储设备而言,要实现电池和超级电容器两者的优点仍然是巨大的挑战。在这里,我们提出了一种方便而有效的方法来合成处理高比表面积和可调孔径分布的多孔碳纳米薄片(PCNF)。我们发现活化剂的量对所得产物的形态和组织结构有深远的影响,并且已经提出了将纳米笼转化成纳米薄片的化学蚀刻工艺。重要的是,以PCNFs为阴极,Zn箔为阳极的Zn-离子混合超级电容器可以克服常规电池和超级电容器的定额能力差和能量密度低的缺点。经过优化的基于PCNF的Zn离子混合超级电容器可提供超高的比电容,出色的倍率性能,出色的循环稳定性和令人印象深刻的能量密度。简便的合成程序及其出色的电化学性能为当前设备提供了在未来的电化学储能系统中使用的巨大可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号