首页> 外文期刊>Applied Surface Science >Impact of liquid layer thickness on the dynamics of nano- to sub-microsecond phenomena of nanosecond pulsed laser ablation in liquid
【24h】

Impact of liquid layer thickness on the dynamics of nano- to sub-microsecond phenomena of nanosecond pulsed laser ablation in liquid

机译:液体层厚度对液体中纳秒脉冲激光烧蚀的纳秒级至亚微秒现象动力学的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamics of nanosecond pulsed laser ablation in liquid (ns-PLAL) are significantly altered in the immediate vicinity of a free boundary. To improve the control and efficiency of ns-PLAL, more knowledge is needed on the evolution of the plasma, shock waves, and cavitation bubbles that form when this technique is performed within a thin liquid layer. Here, we present time-resolved photoelastic observations of ns-PLAL using an epoxy resin target covered with a sub-mm liquid paraffin layer. The investigation was conducted on a nanosecond time scale. When the liquid layer thickness approximates the plasma size that is induced in bulk-liquid ablation, part of the plasma plume is formed outside the liquid. This plasma is more extensive than that produced in bulk-liquid ablation, but more compact than in air ablation. At greater liquid layer thicknesses, the plasma is entirely confined within the liquid. The layer surface is elevated due to the expansion of the cavitation bubble on the target. The laser-induced shock wave is reflected back-and-forth between the liquid-air boundary and target surface, causing the formation of a bulk cavitation zone in the liquid layer. This study also discusses the mechanism by which liquid layer thickness affects the strength of laser-induced stress.
机译:液体(ns-PLAL)中的纳秒脉冲激光烧蚀的动力学在自由边界的紧邻处显着改变。为了改善ns-PLAL的控制和效率,需要对在薄液层中执行该技术时所形成的等离子体,冲击波和空化气泡的演化有更多的了解。在这里,我们提出了使用亚毫米级液体石蜡层覆盖的环氧树脂靶对ns-PLAL进行时间分辨的光弹性观察。该调查是在纳秒级的时间内进行的。当液体层的厚度接近在本体液体烧蚀中引起的等离子体尺寸时,部分等离子体羽流形成在液体外部。该等离子体比本体-液体消融中产生的等离子体更广泛,但比空气消融中的更为紧凑。在较大的液体层厚度下,等离子体被完全限制在液体内。由于空化气泡在靶上的膨胀,层表面升高。激光感应的冲击波在液-气边界和目标表面之间来回反射,从而在液层中形成了空化区域。这项研究还讨论了液层厚度影响激光诱导应力强度的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号