首页> 外文期刊>Applied Surface Science >Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement
【24h】

Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement

机译:深度感测纳米压痕法对等离子体表面钨化层的纳米力学表征

获取原文
获取原文并翻译 | 示例
           

摘要

Plasma surface tungstenizing was performed on Ti-Al-Nb substrate using the double-glow plasma surface alloying technique. The microstructure and composition of the tungstenized layer were determined by scanning electron microscope, X-ray diffraction and X-ray photoelectron spectroscopy. The mechanical properties of the substrate and the tungstenized layer were characterized by the dynamic micro-hardness and the elastic modulus. The results showed that the tungstenized layer was comprised of three distinct sub-layers namely sediment layer, transition layer and diffusion layer, with a total layer thickness of over 25 mu m. The concentration of the tungsten decreased gradually as the layer depth increased and the continuous change in the tungsten content affects the mechanical properties of the alloyed layer. The dynamic micro-hardness and elastic modulus of the tungstenized layer and substrate were investigated by the depth-sensing nano-indentation measurement under different conditions. According to the findings, the values of dynamic micro-hardness exhibited no significant dependence on the indentation load. However, the elastic modulus of the tungstenized layer tended to decrease as the indentation load was increased. Furthermore, the dynamic micro-hardness and elastic modulus curves of the tungstenized layer revealed a pattern similar to the concentration distribution of the tungsten. Both surface micro-hardness and elastic modulus of plasma alloyed surface gradually decreased with the increase of indentation depth, most probably because of the three different regions in the alloyed layer. As for the mechanical properties, the tungstenized layer exhibited significantly higher dynamic micro-hardness and elastic modulus than the substrate. As the cyclic loading-unloading curves of the substrate and the tungstenized layer showed, the elastic recovery and uniform plastic deformation decrease and the fatigue damage of the tungstenized layer is lower than that of the substrate. (C) 2014 Elsevier B.V. All rights reserved.
机译:使用双辉等离子体表面合金化技术在Ti-Al-Nb衬底上进行等离子体表面钨化。通过扫描电子显微镜,X射线衍射和X射线光电子能谱法测定了钨化层的微观结构和组成。通过动态显微硬度和弹性模量表征基材和钨化层的机械性能。结果表明,碳化层由沉积层,过渡层和扩散层三个不同的亚层组成,总层厚超过25μm。钨的浓度随着层深度的增加而逐渐降低,并且钨含量的连续变化影响合金层的机械性能。通过在不同条件下进行深度感应纳米压痕测量,研究了碳化层和基体的动态显微硬度和弹性模量。根据发现,动态显微硬度值对压痕载荷没有显着影响。然而,随着压痕负荷的增加,钨化层的弹性模量趋于降低。此外,钨化层的动态显微硬度和弹性模量曲线显示出与钨的浓度分布相似的图案。随着压痕深度的增加,等离子合金化表面的表面显微硬度和弹性模量都逐渐降低,这很可能是由于合金层中的三个不同区域。至于机械性能,钨化层表现出比基材高得多的动态显微硬度和弹性模量。如图所示,基材和钨化层的循环加载-卸载曲线表明,弹性回复率和均匀的塑性变形降低,并且钨化层的疲劳损伤低于基材。 (C)2014 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Applied Surface Science》 |2015年第1期|160-167|共8页
  • 作者单位

    Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Jiangsu, Peoples R China;

    Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Jiangsu, Peoples R China;

    Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Jiangsu, Peoples R China;

    Eastern Mediterranean Univ, TRNC, Dept Mech Engn, TR-10 Mersin, Turkey;

    Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Jiangsu, Peoples R China;

    Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Jiangsu, Peoples R China;

    Eastern Mediterranean Univ, TRNC, Dept Mech Engn, TR-10 Mersin, Turkey;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Surface alloying; The tungstenized layer; Surface mechanical properties; Dynamic micro-hardness; Elastic modulus;

    机译:表面合金化;渗碳层;表面力学性能;动态显微硬度;弹性模量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号