首页> 外文期刊>IEEE Transactions on Applied Superconductivity >Conceptual design of a magnet system to generate 20 T in a 0.15 mdiameter bore, employing an inductor precooled by liquid nitrogen
【24h】

Conceptual design of a magnet system to generate 20 T in a 0.15 mdiameter bore, employing an inductor precooled by liquid nitrogen

机译:磁体系统的概念设计,采用在液氮中预冷的感应器,可在0.15毫米的孔中产生20 T

获取原文
获取原文并翻译 | 示例

摘要

The research program for an eventual neutrino factory or muon collider needs a magnet of ~0.15 m diameter bore to generate ~20 T over a length of ~0.3 m. Downstream for ~3 m the held should fall gradually to ~1.25 T, while the bore increases fourfold inversely as the square root of the field. A conventional magnet would require ~40 MW; a superconducting or hybrid magnet might cost tens of millions of dollars. An economically feasible system employs a pulse magnet precooled by liquid nitrogen, with two sets of coils energized sequentially. An outer set of coils of ~12 tons, energized in ~20 s by a 16 kA, 250 V supply available at Brookhaven National Laboratory, generates a peak field of ~9 T and stores ~20 MJ. A resistor of ~? Ω inserted across the terminals of the set introduces a voltage drop, initially ~4 kV, to energize an inner set of coils to ~10 kA in ~? s. This set adds ~13 T to the ~7 T remaining from the enter set, whose current has decayed to ~12 kA. Complicating the design is a superconducting coil, once part of the PEP-4 detector at the Stanford Linear Accelerator Center, that begins only ~2.2 m downstream and is sensitive to eddy-current heating by rapid flux changes. Therefore the proposed magnet system includes a conventional DC coil of~0.7 MW to distance the pulse magnet from the PEP-4 coil. Also, a bucking coil in series with the outer set reduces by an order of magnitude the pulsed flux seen by the PEP-4 coil. The bucking coil serves also to reduce the axial force on the PEP-4 cryostat to below its limit of 200 kN
机译:最终中微子工厂或μ子对撞机的研究计划需要一个直径约0.15 m的磁铁,才能在约0.3 m的长度上产生约20T。在下游约3 m处,气藏应逐渐下降至〜1.25 T,而井眼成反比地增加四倍,成为磁场的平方根。传统磁铁需要约40 MW;超导或混合磁体可能要花费数千万美元。一种经济可行的系统采用通过液氮预冷的脉冲磁体,并依次给两组线圈通电。一组约12吨的外部线圈由Brookhaven国家实验室提供的16 kA,250 V电源在约20 s内通电,产生了约9 T的峰值磁场,并存储了约20 MJ。电阻〜?在该组端子两端插入的Ω会引起一个电压降,最初为〜4 kV,以将一组内部线圈通电至〜10 kA。 s。该组将〜13 T添加到输入组剩余的〜7 T内,而输入组的电流已衰减至〜12 kA。使设计复杂化的是超导线圈,它曾经是斯坦福线性加速器中心的PEP-4检测器的一部分,它仅在下游〜2.2 m处开始,并且对快速变化的通量对涡流加热很敏感。因此,提出的磁体系统包括〜0.7 MW的常规DC线圈,以使脉冲磁体与PEP-4线圈保持一定距离。同样,与外部线圈串联的补偿线圈将PEP-4线圈看到的脉冲通量减小一个数量级。弯曲线圈还可以将PEP-4低温恒温器上的轴向力减小到其200 kN的极限以下

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号