...
首页> 外文期刊>IEEE Transactions on Applied Superconductivity >An Effective and Efficient Automatic Test Pattern Generation (ATPG) Paradigm for Certifying Performance of RSFQ Circuits
【24h】

An Effective and Efficient Automatic Test Pattern Generation (ATPG) Paradigm for Certifying Performance of RSFQ Circuits

机译:用于证明RSFQ电路的性能的有效和高效的自动测试模式生成(ATPG)范式

获取原文
获取原文并翻译 | 示例
           

摘要

Rapid single flux quantum (RSFQ) logic, based on Josephson junctions (JJs), is seeing a resurgence as a way for providing high performance in the era beyond the end of physical scaling of complementary metal-oxide-semiconductor (CMOS). Due to its use of fabrication processes with large feature sizes, the defect density for RSFQ is lower than its CMOS counterpart. Hence, process variations and other RSFQ-specific nonidealities are major causes of chip failures. Because of the nature of its quantized pulse-based operation, even highly distorted pulses are interpreted logically correctly by cells, but the timings are affected. Therefore, timing verification and delay testing increase in importance in RSFQ. Our goal is to ensure that designs and fabricated chips provide desired performance. To achieve this goal, we propose new methods and tools for timing verification and delay testing of fully path balanced RSFQ logic circuits that use concurrent-flow clocking scheme. We address several radically new phenomena in the RSFQ technology, especially the existence of single-pattern delay tests and the need to propagate delayed values via multiple pipeline stages. We then characterize cells under process variations and identify delay excitation conditions, sensitization conditions, and conditions for propagation of the logic errors caused by timing violations due to process variations. We then propose a completely new paradigm for automatic test pattern generation (ATPG) which utilizes these new phenomena to select multicycle paths as targets and to generate test patterns that are guaranteed to excite the worst-case delay along each target multicycle path. Finally, we present theoretical proofs and Monte Carlo simulation results for benchmark circuits under process variations to demonstrate that the patterns generated by our new ATPG are effective (invoke maximum delays of target multicycle paths) and efficient (require small numbers of patterns).
机译:基于Josephson结(JJS)的快速单磁通量子(RSFQ)逻辑看,在互补金属氧化物半导体(CMOS)的物理缩放结束之外,在ERA中提供高性能的一种方法。由于其使用具有大特征尺寸的制造过程,RSFQ的缺陷密度低于其CMOS对应物。因此,处理变化和其他特定于RSFQ特定的非侵略性是芯片故障的主要原因。由于其量化的脉冲操作的性质,即使是高度扭曲的脉冲也被小区正确地解释,但是该定时受到影响。因此,定时验证和延迟测试在RSFQ中的重要性增加。我们的目标是确保设计和制造的芯片提供所需的性能。为实现这一目标,我们提出了用于定时验证和延迟测试使用并发流式流量时钟的全路径平衡RSFQ逻辑电路的新方法和工具。我们在RSFQ技术中解决了几种根本新的现象,尤其是单模式延迟测试的存在,并且需要通过多个管道阶段传播延迟值。然后,我们在过程变化下的细胞表征细胞,并识别由于处理变化而导致的定时违规引起的逻辑误差传播的延迟激励条件,敏化条件和条件。然后,我们为自动测试模式生成(ATPG)提出了一种全新的范例,它利用这些新现象来选择多运行路径作为目标,并生成保证激发每个目标多运行路径的最坏情况延迟的测试模式。最后,我们提出了基准电路的理论证据和蒙特卡罗模拟结果,以便在过程变化下证明我们的新ATPG产生的模式有效(调用目标多运行路径的最大延迟)和有效(需要少量模式)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号