...
首页> 外文期刊>Applied Spectroscopy >Optimization of Principal-Component-Analysis-Applied in Situ Spectroscopy Data Using Neural Networks and Genetic Algorithms
【24h】

Optimization of Principal-Component-Analysis-Applied in Situ Spectroscopy Data Using Neural Networks and Genetic Algorithms

机译:基于神经网络和遗传算法的主成分分析原位光谱数据优化

获取原文
获取原文并翻译 | 示例
           

摘要

A new model of multidimensional in situ diagnostic data is presented. This was accomplished by combining a back-propagation neural network (BPNN), principal component analysis (PCA), and a genetic algorithm (GA). The PCA was used to reduce input dimensionality. The GA was applied to search for a set of optimized training factors involved in BPNN training. The presented technique was evaluated with optical emission spectroscopy (OES) data measured during the etching of oxide thin films in a CHF3–CF4 inductively coupled plasma. For a systematic modeling, the etching process was characterized by a face-centered Box Wilson experiment. The etch responses to be modeled include oxide etch rate, oxide profile angle, and oxide etch rate non-uniformity. In PCA, three types of data variances were employed and the reduced input dimensionality corresponding to 100, 99, and 98% are 16, 8, and 5. The BPNN training factors to be optimized include the training tolerance, number of hidden neurons, magnitude of initial weight distribution, gradient of bipolar sigmoid function, and gradient of linear function. The prediction errors of GA-BPNN models are 249 Å/min, 2.64°, and 0.439% for the etch rate, profile angle, and etch rate non-uniformity, respectively. Compared to the conventional and previous full OES models, the presented models demonstrated a significantly improved prediction for all etch responses.
机译:提出了一种新的多维原位诊断数据模型。这是通过结合反向传播神经网络(BPNN),主成分分析(PCA)和遗传算法(GA)来实现的。 PCA用于减少输入维数。遗传算法用于搜索BPNN训练中涉及的一组优化训练因子。利用CHF 3 –CF 4 感应耦合等离子体中的氧化物薄膜蚀刻过程中测得的光学发射光谱(OES)数据对所提出的技术进行了评估。对于系统建模,蚀刻过程的特征在于以面心为中心的Box Wilson实验。要建模的蚀刻响应包括氧化物蚀刻速率,氧化物轮廓角和氧化物蚀刻速率不均匀性。在PCA中,采用了三种类型的数据方差,分别对应于100%,99%和98%的降低的输入维数是16、8和5。要优化的BPNN训练因素包括训练耐受性,隐藏神经元的数量,大小初始重量分布,双极S形函数的梯度和线性函数的梯度。对于刻蚀速率,轮廓角和刻蚀速率不均匀性,GA-BPNN模型的预测误差分别为249Å/ min,2.64°和0.439%。与传统的和以前的完整OES模型相比,所提出的模型证明了对所有蚀刻响应的显着改善。

著录项

  • 来源
    《Applied Spectroscopy》 |2008年第1期|73-77|共5页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号