首页> 外文期刊>Applied Physics A: Materials Science & Processing >Acoustic meta-materials in MEMS BAW resonators
【24h】

Acoustic meta-materials in MEMS BAW resonators

机译:MEMS BAW谐振器中的声学超材料

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a meta-material-based design method for bulk acoustic wave (BAW) resonators with enhanced characteristics compared to those obtained with the typical bulk material implementation. We demonstrate the novel use of empty inclusions (i.e., ‘holes’) in bulk materials for engineering their acoustic (mechanical) properties (e.g. Young’s modulus E, Poisson’s ratio ν and mass density ρ) to tune and achieve optimal acoustical performance/characteristics. Inclusions have been demonstrated before to produce phononic band gaps for wave trapping. We focus on the propagation characteristics of the meta-materials brought into being by these inclusions. We implement patterns of holes with different sizes and distributions, to effectively scatter acoustic waves in bar-type BAW resonators and to devise the desired resonator properties, e.g., the resonant frequency. While the available bulk material is homogeneous and isotropic, the bar consists of an equivalent non-homogeneous material that can for example be distributed by design in order to shrink the overall resonator size, enhance electromechanical transduction coefficients or reject spurious modes. Our paper compares two extraction methods for the equivalent material properties of a periodically hole-punched material: the steady-state mechanical simulation of a unit cell and its ‘phase delay’ counterpart. We discuss their validity and practical use for the design of bar resonators.
机译:本文介绍了一种基于超材料的体声波(BAW)谐振器设计方法,该方法与典型的体材料实现方法相比具有增强的特性。我们展示了散装材料中空夹杂物(即“孔”)在其声学(机械)特性(例如杨氏模量E,泊松比ν和质量密度ρ)的工程设计中的新颖用法,以调整并实现最佳的声学性能/特性。之前已经证明了夹杂物会产生声波能带隙以捕获波。我们关注由这些夹杂物产生的超常材料的传播特性。我们实现具有不同大小和分布的孔的图案,以有效地散射条型BAW谐振器中的声波,并设计出所需的谐振器特性,例如谐振频率。尽管可用的块状材料是均质的且各向同性的,但导条由等效的非均质材料组成,可以例如通过设计进行分配,以缩小谐振器的整体尺寸,增强机电转换系数或拒绝杂散模式。本文针对周期性打孔材料的等效材料特性,比较了两种提取方法:晶胞的稳态力学模拟及其“相延迟”对应物。我们讨论了其在条形谐振器设计中的有效性和实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号