首页> 外文期刊>Applied Physics Letters >The optimized interface characteristics of β-Ga_2O_3 Schottky barrier diode with low temperature annealing
【24h】

The optimized interface characteristics of β-Ga_2O_3 Schottky barrier diode with low temperature annealing

机译:低温退火β-GA_2O_3肖氏屏障二极管的优化界面特性

获取原文
获取原文并翻译 | 示例
           

摘要

A low temperature controlled annealing technique was utilized to improve the performance of vertical β-gallium oxide (β-Ga_2O_3) Schottky barrier diodes (SBDs) in this work. The nickel is diffused into Ga_2O_3, and NiO was formed at the interface between the anode and semiconductor generating p-n junction after low temperature annealing. Simultaneously, the trap state density of interface Ni/Ga_2O_3 as well as the carbon bonded with oxygen on the surface was reduced, which was proved by the capacitance and conductance measurements and x-ray photoelectron spectroscopic analysis, respectively. Combined the decreased saturation current density by three orders of magnitude from 1.21 × 10~(-6) to 9.27 × 10~(-8) and 5.12 × 10~(-9) A/cm~2 and larger breakdown voltage from 220 to 270 V owing to the optimized interface and the formation of NiO, a low temperature annealing technique makes certain effective improvement for vertical β-Ga_2O_3 SBDs via interface engineering.
机译:利用低温控制退火技术来改善本作工作中垂直β-镓(β-GA_2O_3)肖特基势垒二极管(SBD)的性能。 镍散射到Ga_2O_3中,并且在低温退火后在阳极和半导体产生P-N结之间的界面处形成NIO。 同时,减少了接口Ni / Ga_2O_3的捕集状态密度以及表面上与氧键合的碳,分别通过电容和电导测量和X射线光电子光谱分析证明。 将饱和电流密度降低三个数量级,从1.21×10〜(-6)到9.27×10〜(-8)和5.12×10〜(-9)A / cm〜2和220的较大击穿电压 由于优化的界面和NIO的形成,低温退火技术通过界面工程对垂直β-GA_2O_3 SBD进行了一定有效的改进。

著录项

  • 来源
    《Applied Physics Letters》 |2021年第13期|132103.1-132103.6|共6页
  • 作者单位

    Key Lab of Wide Bandgap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Lab of Wide Bandgap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Lab of Wide Bandgap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Lab of Wide Bandgap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Lab of Wide Bandgap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Lab of Wide Bandgap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Lab of Wide Bandgap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Lab of Wide Bandgap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Lab of Wide Bandgap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Lab of Wide Bandgap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Lab of Wide Bandgap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

    Key Lab of Wide Bandgap Semiconductor Materials and Devices School of Microelectronics Xidian University Xi'an 710071 People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号