首页> 外文期刊>Applied Physics Letters >Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi_2Te_3
【24h】

Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi_2Te_3

机译:巨型光诱导的异常霍尔效应拓扑表面状态在三维拓扑绝缘体Bi_2te_3

获取原文
获取原文并翻译 | 示例
       

摘要

Topological insulators (TIs) are considered as ideal spintronic materials due to the spin-momentum-locked Dirac surface states. The photoinduced anomalous Hall effect (PAHE) is a powerful tool to investigate the spin Hall effect of topological insulators even at room temperature. In this Letter, the PAHE has been observed in three dimensional topological insulator Bi_2Te_3 thin films grown on Si substrates at room temperature. As the thickness of the Bi_2Te_3 films increases from 3 to 20 quintuple layer (QL), the PAHE first increases and then decreases, and it reaches a maximum at 7 QL. The sign reversal of the PAHE of the 3 QL sample after oxidation reveals that the PAHE of the Bi_2Te_3 thin films is dominated by the top surface states, which is further confirmed by the circular photogalvanic effect under front and back illuminations. The photoinduced anomalous Hall conductivity excited by 1064 nm light is as large as 5.28 nA V~(-1) W~(-1) cm~2 in the 7 QL sample, much larger than that observed in InGaAs/AlGaAs quantum wells (0.445 nA V~(-1) W~(-1) cm~2) and GaN/AlGaN heterostructures (0.143 nA V~(-1) W~(-1) cm~2). By comparing the PAHE current excited by 1064 nm with that excited by 1342 nm, we reveal that the tremendous PAHE excited by 1064 nm light is due to the modulation effect of spin injection from Si substrates. The giant PAHE value observed in TI Bi_2Te_3 may offer spintronic applications of TIs such as high-efficient light-polarization-state detectors.
机译:由于旋转动量锁定的DIRAC表面状态,拓扑绝缘体(TIS)被认为是理想的旋转反应材料。光导致的异常霍尔效应(PAHE)是一种强大的工具,可以在室温下调查拓扑绝缘体的旋转霍尔效果。在这封信中,在室温下在Si基板上生长的三维拓扑绝缘体Bi_2Te_3薄膜已经观察到PAHE。由于Bi_2Te_3膜的厚度从3到20个Quintuple层(Q1)增加,因此PAHE首先增加然后减少,并且它在7 QL处达到最大值。氧化后3 QL样品的PAHE的符号逆转显示,Bi_2Te_3薄膜的PAHE由顶表面状态支配,其通过前后照明下的圆形光寄生效果进一步证实。通过1064nm光激发的光突出的异常霍尔电导率在7 QL样品中大约5.28纳V〜(-1)〜2,比Ingaas / Algaas量子孔中观察到的大得多(0.445 Na V〜(-1)W〜(-1)cm〜2)和GaN / AlGaN异质结构(0.143 Na V〜(-1)W〜(-1)cm〜2)。通过比较1064nm激发的PAHE电流,通过1342nm激发,我们揭示了由1064nm光激发的巨大帕羊是由于Si衬底的旋转注射的调制效果。在TI BI_2TE_3中观察到的巨型PAHE值可以提供TIS的Spintronic应用,例如高效的光极化状态探测器。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第14期|141603.1-141603.5|共5页
  • 作者单位

    Institute of Micro/Nano Devices and Solar Cells School of Physics and Information Engineering Fuzhou University Fuzhou 350108 China;

    Institute of Micro/Nano Devices and Solar Cells School of Physics and Information Engineering Fuzhou University Fuzhou 350108 China;

    Institute of Micro/Nano Devices and Solar Cells School of Physics and Information Engineering Fuzhou University Fuzhou 350108 China;

    Department of Physics State Key Laboratory of Low Dimensional Quantum Physics Tsinghua University Beijing 100084 China;

    Key Laboratory of Semiconductor Materials Science Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 China and College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China;

    Key Laboratory of Semiconductor Materials Science Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 China and College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China;

    Key Laboratory of Semiconductor Materials Science Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 China and College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China;

    School of Physics University of New South Wales Sydney New South Wales 2052 Australia CAS Key Laboratory of Microscale Magnetic Resonance Department of Modern Physics Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Hefei 230026 China;

    Institute of Micro/Nano Devices and Solar Cells School of Physics and Information Engineering Fuzhou University Fuzhou 350108 China Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou 213164 Jiangsu China;

    Institute of Micro/Nano Devices and Solar Cells School of Physics and Information Engineering Fuzhou University Fuzhou 350108 China Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou 213164 Jiangsu China;

    Department of Physics State Key Laboratory of Low Dimensional Quantum Physics Tsinghua University Beijing 100084 China;

    Department of Physics State Key Laboratory of Low Dimensional Quantum Physics Tsinghua University Beijing 100084 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:17:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号