...
首页> 外文期刊>Applied Physics Letters >Engineering the (In, Al, Ga)N back-barrier to achieve high channel-conductivity for extremely scaled channel-thicknesses in N-polar GaN high-electron-mobility-transistors
【24h】

Engineering the (In, Al, Ga)N back-barrier to achieve high channel-conductivity for extremely scaled channel-thicknesses in N-polar GaN high-electron-mobility-transistors

机译:对(In,Al,Ga)N背势垒进行工程设计,以实现高沟道电导率,从而在N极GaN高电子迁移率晶体管中实现极高的沟道厚度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Scaling down the channel-thickness (t_(ch)) in GaN/(In, Al, Ga)N high-electron-mobility-transistors (HEMTs) is essential to eliminating short-channel effects in sub 100 nm gate length HEMTs. However, this scaling can degrade both charge density (n_s) and mobility (μ), thereby reducing channel-conductivity. In this study, the back-barrier design in N-polar GaN/(In, Al, Ga)N was engineered to achieve highly conductive-channels with t_(ch) < 5-nm using metal organic chemical vapor deposition. Compositional-grading was found to be the most effective approach in reducing channel-conductivity for structures with t_(ch)~3-nm. For a HEMT with 3-nm-thick-channel, a sheet-resistance of 329 Ω/□ and a peak-transconductance of 718 mS/mm were demonstrated.
机译:缩小GaN /(In,Al,Ga)N高电子迁移率晶体管(HEMT)中的沟道厚度(t_(ch))对于消除低于100 nm栅极长度的HEMT中的短沟道效应至关重要。但是,这种缩放会降低电荷密度(n_s)和迁移率(μ),从而降低沟道电导率。在这项研究中,采用金属有机化学气相沉积技术,对N极性GaN /(In,Al,Ga)N中的反向势垒设计进行了设计,以实现t_(ch)<5nm的高导电沟道。对于降低t_(ch)〜3-nm结构的沟道电导率,成分分级是最有效的方法。对于具有3nm厚通道的HEMT,其薄层电阻为329Ω/□,峰值导通值为718 mS / mm。

著录项

  • 来源
    《Applied Physics Letters》 |2014年第9期|092107.1-092107.4|共4页
  • 作者单位

    Department of Electrical and Computer Engineering, University of California, Santa Barbara,California 93106, USA;

    Department of Electrical and Computer Engineering, University of California, Santa Barbara,California 93106, USA;

    Department of Electrical and Computer Engineering, University of California, Santa Barbara,California 93106, USA;

    Department of Electrical and Computer Engineering, University of California, Santa Barbara,California 93106, USA;

    Department of Electrical and Computer Engineering, University of California, Santa Barbara,California 93106, USA;

    Department of Electrical and Computer Engineering, University of California, Santa Barbara,California 93106, USA;

    Department of Electrical and Computer Engineering, University of California, Santa Barbara,California 93106, USA;

    Department of Electrical and Computer Engineering, University of California, Santa Barbara,California 93106, USA,Materials Department, University of California, Santa Barbara, California 93106, USA;

    Department of Electrical and Computer Engineering, University of California, Santa Barbara,California 93106, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号