首页> 外文期刊>Applied Physics Letters >Surface plasmon resonance enhanced light absorption of Au decorated composition-tuned ZnO/Zn_xCd_(1-x)Se_yTe_(1-y) core/shell nanowires for efficient H_2 production
【24h】

Surface plasmon resonance enhanced light absorption of Au decorated composition-tuned ZnO/Zn_xCd_(1-x)Se_yTe_(1-y) core/shell nanowires for efficient H_2 production

机译:表面等离振子共振增强了Au装饰的成分调谐的ZnO / Zn_xCd_(1-x)Se_yTe_(1-y)核/壳纳米线的光吸收,可有效生产H_2

获取原文
获取原文并翻译 | 示例

摘要

Efficient solar-to-hydrogen photoelectrodes need harvest sunlight to capacity and improve the separation efficiency of charge carriers for chemical reactions in water. Herein, we demonstrate the merits of type-Ⅱ heterostructures with component controllable quaternary shells (Zn_xCd_(1-x)Se_yTe_(1-y)) and the surface plasmon resonance of Au nanoparticles to satisfy photocatalytic requirements. Our ZnO/Zn_xCd_(1-x)Se_yTe_(1-y)/Au nanostructures display a broad absorption edge from UV to NIR (Near Infrared) and high charge separation efficiency. The finite element method simulation and UV-vis-NIR diffuse reflectance spectroscopy confirm the enhanced absorption of visible light. Furthermore, these ZnO/Zn_xCd_(1-x)Se_yTe_(1-y)/Au heterostructures show remarkable hydrogen-production ability from water, suggesting a type of photocatalytic paradigm for H_2 production.
机译:高效的太阳能氢光电电极需要收集阳光以达到容量,并提高电荷载体在水中化学反应的分离效率。在本文中,我们证明了具有可控组分季铵壳(Zn_xCd_(1-x)Se_yTe_(1-y))的II型异质结构的优点以及Au纳米粒子的表面等离子体共振满足光催化要求。我们的ZnO / Zn_xCd_(1-x)Se_yTe_(1-y)/ Au纳米结构显示了从UV到NIR(近红外)的宽吸收边缘和高电荷分离效率。有限元方法模拟和UV-vis-NIR漫反射光谱证实了可见光的吸收增强。此外,这些ZnO / Zn_xCd_(1-x)Se_yTe_(1-y)/ Au异质结构显示出显着的从水中制氢的能力,暗示了一种用于H_2生产的光催化范式。

著录项

  • 来源
    《Applied Physics Letters》 |2015年第12期|123904.1-123904.5|共5页
  • 作者单位

    National Center for Nanoscience and Technology, Beijing 100190, China;

    School of Physics, Peking University, Beijing 100871, China;

    National Center for Nanoscience and Technology, Beijing 100190, China;

    National Center for Nanoscience and Technology, Beijing 100190, China;

    National Center for Nanoscience and Technology, Beijing 100190, China;

    National Center for Nanoscience and Technology, Beijing 100190, China;

    National Center for Nanoscience and Technology, Beijing 100190, China;

    School of Physics, Peking University, Beijing 100871, China;

    National Center for Nanoscience and Technology, Beijing 100190, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号