首页> 外文期刊>Applied Physics Letters >Experimental demonstration of line-width modulation in plasmonic lithography using a solid immersion lens-based active nano-gap control
【24h】

Experimental demonstration of line-width modulation in plasmonic lithography using a solid immersion lens-based active nano-gap control

机译:基于固态浸没透镜的有源纳米间隙控制在等离子光刻中线宽调制的实验演示

获取原文
获取原文并翻译 | 示例
       

摘要

Plasmonic lithography has been used in nanofabrication because of its utility beyond the diffraction limit. The resolution of plasmonic lithography depends on the nano-gap between the nanoaperture and the photoresist surface-changing the gap distance can modulate the line-width of the pattern. In this letter, we demonstrate solid-immersion lens based active non-contact plasmonic lithography, applying a range of gap conditions to modulate the line-width of the pattern. Using a solid-immersion lens-based near-field control system, the nano-gap between the exit surface of the nanoaperture and the media can be actively modulated and maintained to within a few nanometers. The line-widths of the recorded patterns using 15- and 5-nm gaps were 47 and 19.5 nm, respectively, which matched closely the calculated full-width at half-maximum. From these results, we conclude that changing the nano-gap within a solid-immersion lens-based plasmonic head results in varying line-width patterns.
机译:由于等离子光刻技术的实用性超出了衍射极限,因此等离子光刻技术已用于纳米加工中。等离子光刻的分辨率取决于纳米孔和光致抗蚀剂之间的纳米间隙,改变间隙距离可以调节图案的线宽。在这封信中,我们演示了基于固态浸没透镜的有源非接触等离子体刻蚀技术,应用了一系列间隙条件来调节图案的线宽。使用基于固体浸没透镜的近场控制系统,可以主动调制纳米孔的出射表面与介质之间的纳米间隙,并将其保持在几纳米范围内。使用15纳米和5纳米间隙的记录图案的线宽分别为47和19.5纳米,这与计算的半峰全宽紧密匹配。根据这些结果,我们得出结论,改变基于固体浸没透镜的等离子头内的纳米间隙会导致线宽图案的变化。

著录项

  • 来源
    《Applied Physics Letters》 |2015年第5期|051111.1-051111.5|共5页
  • 作者单位

    School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Sudaemungu, Seoul 120-749, South Korea;

    School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Sudaemungu, Seoul 120-749, South Korea;

    School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Sudaemungu, Seoul 120-749, South Korea;

    School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Sudaemungu, Seoul 120-749, South Korea;

    School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Sudaemungu, Seoul 120-749, South Korea;

    School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Sudaemungu, Seoul 120-749, South Korea;

    Center for Information Storage Device, Yonsei University, 50 Yonsei-ro, Sudaemungu, Seoul 120-749, South Korea;

    Center for Information Storage Device, Yonsei University, 50 Yonsei-ro, Sudaemungu, Seoul 120-749, South Korea;

    School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Sudaemungu, Seoul 120-749, South Korea;

    Center for Information Storage Device, Yonsei University, 50 Yonsei-ro, Sudaemungu, Seoul 120-749, South Korea;

    School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Sudaemungu, Seoul 120-749, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:15:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号