首页> 外文期刊>Applied Physics Letters >Anisotropic small-polaron hopping in W:BiVO_4 single crystals
【24h】

Anisotropic small-polaron hopping in W:BiVO_4 single crystals

机译:W:BiVO_4单晶中的各向异性小极化子跳跃

获取原文
获取原文并翻译 | 示例
       

摘要

DC electrical conductivity, Seebeck and Hall coefficients are measured between 300 and 450K on single crystals of monoclinic bismuth vanadate that are doped n-type with 0.3% tungsten donors (W:BiVO_4). Strongly activated small-polaron hopping is implied by the activation energies of the Arrhenius conductivities (about 300 meV) greatly exceeding the energies characterizing the falls of the Seebeck coefficients' magnitudes with increasing temperature (about 50meV). Small-polaron hopping is further evidenced by the measured Hall mobility in the ab-plane (10~(-1)cm~2V~(-1)s~(-1) at 300 K) being larger and much less strongly activated than the deduced drift mobility (about 5 × 10~(-5) cm~2 V~(-1) s~(-1) at 300 K). The conductivity and n-type Seebeck coefficient is found to be anisotropic with the conductivity larger and the Seebeck coefficient's magnitude smaller and less temperature dependent for motion within the ab-plane than that in the c-direction. These anisotropics are addressed by considering highly anisotropic next-nearest-neighbor (≈5 A) transfers in addition to the somewhat shorter (≈4 A), nearly isotropic nearest-neighbor transfers.
机译:直流电导率,塞贝克系数和霍尔系数在300至450K的单斜钒酸铋单晶上测量,该单晶掺有0.3%的钨供体(W:BiVO_4)为n型。 Arrhenius电导率的激活能量(约300 meV)暗示了强烈激活的小极化子跳跃,该能量大大超过了随温度升高(约50meV)塞贝克系数幅度下降的能量。小极化子跳变还可以通过测量的ab平面中的霍尔迁移率(在300 K下为10〜(-1)cm〜2V〜(-1)s〜(-1))来证明,并且其激活强度远小于推导的漂移迁移率(在300 K时约为5×10〜(-5)cm〜2 V〜(-1)s〜(-1))。发现电导率和n型塞贝克系数是各向异性的,其电导率较大,并且塞贝克系数的大小较小,并且与ab方向内的运动相比,与c方向的运动相关的温度较小。通过考虑高度各向异性的近邻(≈5A)传输以及略短(≈4A),几乎各向同性的近邻传输,可以解决这些各向异性问题。

著录项

  • 来源
    《Applied Physics Letters》 |2015年第2期|022106.1-022106.5|共5页
  • 作者单位

    McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;

    Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA;

    Lake Shore Cryotronics, Westerville, Ohio 43081, USA;

    School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164,USA,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, USA;

    Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA,Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA;

    Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA;

    Department of Physics and Astronomy, The University of New Mexico, Albuquerque, New Mexico 87131,USA;

    McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA,Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA,Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:15:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号