首页> 外文期刊>Applied Physics Letters >Zn precipitation and Li depletion in Zn implanted ZnO
【24h】

Zn precipitation and Li depletion in Zn implanted ZnO

机译:Zn注入ZnO中的Zn沉淀和Li耗竭

获取原文
获取原文并翻译 | 示例
       

摘要

Ion implantation of Zn substituting elements in ZnO has been shown to result in a dramatic Li depletion of several microns in hydrothermally grown ZnO. This has been ascribed to a burst of mobile Zn interstials. In this study, we seek to understand the reason behind this interstitial mediated transient enhanced diffusion in Li-containing ZnO samples after Zn implantation. ZnO wafers were implanted with Zn to two doses, 5 × 10~(15)cm~(-2) and 1 × 10~(17)cm~(-2). Secondary ion mass spectrometry was carried out to profile the Li depletion depth for different annealing temperatures between 600 and 800 ℃. The 800 ℃ annealing had the most significant Li depletion of close to 60 μm. Transmission electron microscopy (TEM) was carried out in selected samples to identify the reason behind the Li depletion. In particular, TEM investigations of samples annealed at 750 ℃ show significant Zn precipitation just below the depth of the projected range of the implanted ions. We propose that the Zn precipitation is indicative of Zn supersaturation. Both the Li depletion and Zn precipitation are competing synchronous processes aimed at reducing the excess Zn interstitials.
机译:离子注入ZnO中的Zn替代元素的离子注入已显示在水热生长的ZnO中导致几微米的显着Li耗尽。这归因于可移动的Zn间隙的爆发。在这项研究中,我们试图了解在锌植入后含锂的ZnO样品中这种间隙介导的瞬态增强扩散背后的原因。在ZnO晶片上注入Zn两种剂量,分别为5×10〜(15)cm〜(-2)和1×10〜(17)cm〜(-2)。进行了二次离子质谱分析,分析了600至800℃之间不同退火温度下锂的耗尽深度。 800℃退火具有最显着的锂耗尽,接近60μm。在选定的样品中进行了透射电子显微镜(TEM),以确定锂耗尽的原因。尤其是,在750℃退火的样品的TEM研究表明,恰好在注入离子投射范围的深度以下,有大量的Zn沉淀。我们建议锌的沉淀表明锌过饱和。锂的耗尽和锌的沉淀都是竞争的同步过程,旨在减少过量的锌间隙。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第2期|022102.1-022102.4|共4页
  • 作者单位

    Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia;

    Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway;

    Australian National Fabrication Facility, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia;

    Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia;

    Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway;

    Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号