首页> 外文期刊>Applied Physics Letters >Dry-wet digital etching of Ge_(1-x)Sr_x
【24h】

Dry-wet digital etching of Ge_(1-x)Sr_x

机译:Ge_(1-x)Sr_x的干湿数字蚀刻

获取原文
获取原文并翻译 | 示例
       

摘要

The development of a precise micromachining process for Ge_(1-x)Sr_x has the potential to enable both the fabrication and optimization of Ge_(1-x)Sr_x-based devices in photonics and microelectromechanical systems. We demonstrate a digital etching scheme for Ge_(0.922)Sn_(0.078) based on a two-stage, highly selective CF_4 plasma dry etch and HC1 wet etch. Using X-Ray Reflectivity, we show consistent etch control as low as 1.5 nm per cycle, which is defined as one dry etch step followed by one wet etch step. The etch rate increases to 3.2 nm per cycle for a longer dry etch time due to physical sputtering contributions, accompanied by an increase in RMS surface roughness. By operating within a regime with minimal sputtering, we demonstrate that good digital etch depth control and surface quality can be achieved using this technique.
机译:Ge_(1-x)Sr_x的精确微加工工艺的开发具有潜力,使得能够在光子学和微机电系统中制造和优化基于Ge_(1-x)Sr_x的器件。我们演示了基于两阶段,高度选择性的CF_4等离子干法刻蚀和HCl湿法刻蚀的Ge_(0.922)Sn_(0.078)的数字刻蚀方案。使用X射线反射率,我们显示出每个周期低至1.5 nm的一致蚀刻控制,这被定义为一个干蚀刻步骤,然后是一个湿蚀刻步骤。由于物理溅射的作用,在更长的干法蚀刻时间内,蚀刻速率增加到了每个周期3.2 nm,并伴随着RMS表面粗糙度的增加。通过在最小溅射的范围内进行操作,我们证明了使用此技术可以实现良好的数字蚀刻深度控制和表面质量。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第6期|063110.1-063110.4|共4页
  • 作者单位

    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA;

    Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA;

    Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA;

    Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA;

    Applied Materials, Inc., 974 E. Arques Avenue, Sunnyvale, California 94085, USA;

    OEpic Semiconductors Inc., 1231 Bordeaux Drive, Sunnyvale, California 94089, USA;

    Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA;

    Applied Materials, Inc., 974 E. Arques Avenue, Sunnyvale, California 94085, USA;

    Applied Materials, Inc., 974 E. Arques Avenue, Sunnyvale, California 94085, USA;

    Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA;

    Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号