首页> 外文期刊>Journal of Applied Physics >Synthesis of Ge_(1-x)Sr_x alloys by ion implantation and pulsed laser melting: Towards a group Ⅳ direct bandgap material
【24h】

Synthesis of Ge_(1-x)Sr_x alloys by ion implantation and pulsed laser melting: Towards a group Ⅳ direct bandgap material

机译:离子注入和脉冲激光熔化法合成Ge_(1-x)Sr_x合金:面向Ⅳ族直接带隙材料

获取原文
获取原文并翻译 | 示例
           

摘要

The germanium-tin (Ge_(1-x)Sn_x) material system is expected to be a direct bandgap group Ⅳ semiconductor at a Sn content of 6.5 - 11 at. %. Such Sn concentrations can be realized by non-equilibrium deposition techniques such as molecular beam epitaxy or chemical vapour deposition. In this report, the combination of ion implantation and pulsed laser melting is demonstrated to be an alternative promising method to produce a highly Sn concentrated alloy with a good crystal quality. The structural properties of the alloys such as soluble Sn concentration, strain distribution, and crystal quality have been characterized by Rutherford backscattering spectrometry, Raman spectroscopy, x ray diffraction, and transmission electron microscopy. It is shown that it is possible to produce a high quality alloy with up to 6.2 at. %Sn. The optical properties and electronic band structure have been studied by spectroscopic ellipsometry. The introduction of substitutional Sn into Ge is shown to either induce a splitting between light and heavy hole subbands or lower the conduction band at the Γvalley. Limitations and possible solutions to introducing higher Sn content into Ge that is sufficient for a direct bandgap transition are also discussed.
机译:锗-锡(Ge_(1-x)Sn_x)材料系统有望成为Sn含量为6.5-11 at的直接带隙Ⅳ族半导体。 %。可以通过诸如分子束外延或化学气相沉积之类的非平衡沉积技术来实现这种Sn浓度。在本报告中,离子注入和脉冲激光熔化的组合被证明是生产具有良好晶体质量的高锡浓缩合金的另一种有前途的方法。合金的结构特性,例如可溶性锡浓度,应变分布和晶体质量,已通过卢瑟福背散射光谱,拉曼光谱,X射线衍射和透射电子显微镜进行了表征。结果表明,可以生产高达6.2 at。的高质量合金。 %Sn。光学性质和电子能带结构已通过椭圆偏振光谱法研究。已显示将替代Sn引入Ge会引起轻空穴子带和重空穴子带分裂,或降低Γ谷处的导带。还讨论了将足够高的Sn含量引入Ge的局限性和可能的​​解决方案,这些含量足以实现直接的带隙跃迁。

著录项

  • 来源
    《Journal of Applied Physics》 |2016年第18期|183102.1-183102.8|共8页
  • 作者单位

    Department of Electronic Materials Engineering, Research School of Physics and Engineering,Australian National University, Canberra, Australian Capital Territory 0200, Australia;

    Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge,Massachusetts 02138, USA;

    Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge,Massachusetts 02138, USA;

    Department of Electronic Materials Engineering, Research School of Physics and Engineering,Australian National University, Canberra, Australian Capital Territory 0200, Australia;

    School of Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue,Cambridge, Massachusetts 02139, USA;

    Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge,Massachusetts 02138, USA;

    Department of Electronic Materials Engineering, Research School of Physics and Engineering,Australian National University, Canberra, Australian Capital Territory 0200, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号