首页> 外文期刊>Applied Physics Letters >Lateral carrier diffusion in InGaAs/GaAs coupled quantum dot-quantum well system
【24h】

Lateral carrier diffusion in InGaAs/GaAs coupled quantum dot-quantum well system

机译:InGaAs / GaAs耦合量子点-量子阱系统中的横向载流子扩散

获取原文
获取原文并翻译 | 示例
       

摘要

The lateral carrier diffusion process is investigated in coupled InGaAs/GaAs quantum dot-quantum well (QD-QW) structures by means of spatially resolved photoluminescence spectroscopy at low temperature. Under non-resonant photo-excitation above the GaAs bandgap, the lateral carrier transport reflected in the distorted electron-hole pair emission profiles is found to be mainly governed by high energy carriers created within the 3D density of states of GaAs. In contrast, for the case of resonant excitation tuned to the QW-like ground state of the QD-QW system, the emission profiles remain unaffected by the excess kinetic energy of carriers and local phonon heating within the pump spot. The lateral diffusion lengths are determined and present certain dependency on the coupling strength between QW and QDs. While for a strongly coupled structure the diffusion length is found to be around 0.8 μm and monotonically increases up to 1.4 μm with the excitation power density, in weakly coupled structures, it is determined to ca. 1.6 μm and remained virtually independent of the pumping power density.
机译:利用低温空间分辨光致发光光谱技术研究了耦合的InGaAs / GaAs量子点-量子阱(QD-QW)结构中的横向载流子扩散过程。在GaAs带隙之上的非共振光激发下,扭曲的电子-空穴对发射轮廓中反映的横向载流子传输主要受GaAs态3D密度​​内产生的高能载流子支配。相反,对于调谐到QD-QW系统类似QW的基态的共振激励的情况,发射轮廓不受载流子的过量动能和泵浦点内局部声子加热的影响。确定了横向扩散长度,并确定了其与QW和QD之间的耦合强度的一定依赖性。对于强耦合结构,发现扩散长度约为0.8μm,并且随着激发功率密度单调增加至1.4μm,而在弱耦合结构中,扩散长度确定为。 1.6μm,实际上与泵浦功率密度无关。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第22期|221104.1-221104.5|共5页
  • 作者单位

    Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;

    Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;

    Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;

    Institute of Nanostructure Technologies and Analytics, Technische Physik, CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany;

    Institute of Nanostructure Technologies and Analytics, Technische Physik, CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany,National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae 126A, 077190, Voluntari, Romania;

    Institute of Nanostructure Technologies and Analytics, Technische Physik, CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany;

    Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;

    Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号