首页> 外文期刊>Applied Physics Letters >Breakdown mechanism in 1 kA/cm~2 and 960 V E-mode β-Ga_2O_3 vertical transistors
【24h】

Breakdown mechanism in 1 kA/cm~2 and 960 V E-mode β-Ga_2O_3 vertical transistors

机译:1 kA / cm〜2和960 V E型β-Ga_2O_3垂直晶体管的击穿机制

获取原文
获取原文并翻译 | 示例
       

摘要

A high current density of 1 kA/cm( )(2)is experimentally realized in enhancement-mode Ga2O3 vertical power metal-insulator field-effect transistors with fin-shaped channels. Comparative analysis shows that the more than doubled current density over the prior art arises from a larger transistor channel width; on the other hand, a wider channel also leads to a more severe drain-induced barrier lowering therefore premature transistor breakdown at zero gate-source bias. The observation of a higher current density in a wider channel confirms that charge trapping in the gate dielectric limits the effective field-effect mobility in these transistor channels, which is about 2 x smaller than the electron mobility in the Ga2O3 drift layer. The tradeoff between output-current density and breakdown voltage also depends on the trap density. With minimal trap states, the output current density should remain high while breakdown voltage increases with decreasing fin-channel width. Published by AIP Publishing.
机译:在具有鳍形通道的增强型Ga2O3垂直功率金属绝缘体场效应晶体管中,通过实验实现了1 kA / cm()(2)的高电流密度。比较分析表明,与现有技术相比,电流密度增加了一倍以上,这是由于晶体管的沟道宽度较大所致。另一方面,较宽的沟道还会导致更严重的漏极感应势垒降低,因此在零栅极-源极偏置下晶体管过早击穿。在较宽的沟道中观察到较高的电流密度证实,栅电介质中的电荷俘获限制了这些晶体管沟道中的有效场效应迁移率,该迁移率比Ga2O3漂移层中的电子迁移率小约2倍。输出电流密度和击穿电压之间的折衷还取决于陷阱密度。在陷阱状态最小的情况下,输出电流密度应保持较高,而击穿电压随鳍沟道宽度的减小而增加。由AIP Publishing发布。

著录项

  • 来源
    《Applied Physics Letters》 |2018年第12期|122103.1-122103.5|共5页
  • 作者单位

    Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA;

    Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA;

    Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA;

    Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA;

    Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA;

    Novel Crystal Technol Inc, Sayama, Saitama 3501328, Japan;

    Novel Crystal Technol Inc, Sayama, Saitama 3501328, Japan;

    Novel Crystal Technol Inc, Sayama, Saitama 3501328, Japan;

    Hosei Univ, Ctr Micronano Technol, Tokyo 1840003, Japan;

    Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA;

    Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号