首页> 外文期刊>Applied Physics Letters >Flexible surface acoustic wave strain sensor based on single crystalline LiNbO_3 thin film
【24h】

Flexible surface acoustic wave strain sensor based on single crystalline LiNbO_3 thin film

机译:基于单晶LiNbO_3薄膜的柔性表面声波应变传感器

获取原文
获取原文并翻译 | 示例
       

摘要

A flexible surface acoustic wave (SAW) strain sensor in the frequency range of 162-325MHz was developed based on a single crystalline LiNbO3 thin film with dual resonance modes, namely, the Rayleigh mode and the thickness shear mode (TSM). This SAW sensor could handle a wide strain range up to +/- 3500 mu e owing to its excellent flexibility, which is nearly six times the detecting range of bulk piezoelectric substrate based SAW strain sensors. The sensor exhibited a high sensitivity of 193 Hz/mu e with a maximum hysteresis less than 1.5%. The temperature coefficients of frequency, for Rayleigh and TSM modes, were -85 and -59 ppm/degrees C, respectively. No visible deterioration was observed after cyclic bending for hundreds of times, showing its desirable stability and reliability. By utilizing the dual modes, the strain sensor with a self-temperature calibrated capability can be achieved. The results demonstrate that the sensor is an excellent candidate for strain sensing. Published by AIP Publishing.
机译:基于具有双共振模式即瑞利模式和厚度剪切模式(TSM)的单晶LiNbO3薄膜,开发了一种在162-325MHz频率范围内的柔性表面声波(SAW)应变传感器。由于其出色的柔韧性,该SAW传感器可以处理高达+/- 3500μe的宽应变范围,几乎是基于压电体的表面声波应变传感器的检测范围的六倍。该传感器具有193 Hz /μe的高灵敏度,最大滞后小于1.5%。对于瑞利和TSM模式,频率的温度系数分别为-85和-59 ppm /℃。循环弯曲数百次后,未观察到可见的劣化,显示出所需的稳定性和可靠性。通过使用双模式,可以实现具有自温度校准能力的应变传感器。结果表明该传感器是应变感测的极佳候选者。由AIP Publishing发布。

著录项

  • 来源
    《Applied Physics Letters》 |2018年第9期|093502.1-093502.5|共5页
  • 作者单位

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Key Lab Adv Micro Nano Elect Devices & Smart Syst, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Key Lab Adv Micro Nano Elect Devices & Smart Syst, Hangzhou 310027, Zhejiang, Peoples R China;

    Hangzhou Dianzi Univ, Minist Educ, Key Lab RF Circuits & Syst, Hangzhou 310018, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Key Lab Adv Micro Nano Elect Devices & Smart Syst, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Key Lab Adv Micro Nano Elect Devices & Smart Syst, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Key Lab Adv Micro Nano Elect Devices & Smart Syst, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Key Lab Adv Micro Nano Elect Devices & Smart Syst, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Key Lab Adv Micro Nano Elect Devices & Smart Syst, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Key Lab Adv Micro Nano Elect Devices & Smart Syst, Hangzhou 310027, Zhejiang, Peoples R China;

    Hangzhou Dianzi Univ, Minist Educ, Key Lab RF Circuits & Syst, Hangzhou 310018, Zhejiang, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号