首页> 外文期刊>Applied Numerical Mathematics >Using dynamical systems methods to solve minimization problems
【24h】

Using dynamical systems methods to solve minimization problems

机译:使用动力系统方法解决最小化问题

获取原文
获取原文并翻译 | 示例

摘要

One possibility to compute a local minimum of a real-valued function f of N unknowns is to solve the gradient differential equation x = - ▽f(x). In the present paper we derive a convergence result for minimization problems by discretizing this equation via fixed time-stepping one-step methods. We compare the asymptotic features of the numerical and the exact solutions. Furthermore, we show that for a certain class of one-step methods the totality of the discrete and the continuous ω-limit sets coincide if the stepsize is sufficiently small and if all equilibria of the gradient differential equation are regular.
机译:计算N个未知数的实值函数f的局部最小值的一种可能性是求解梯度微分方程x =-▽f(x)。在本文中,我们通过固定时间步长单步方法离散该方程,得出了最小化问题的收敛结果。我们比较了数值解和精确解的渐近特征。此外,我们表明,对于某类单步方法,如果步长足够小并且梯度微分方程的所有平衡都是规则的,则离散和连续ω-极限集的总和是重合的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号