首页> 外文期刊>Applied Numerical Mathematics >Inverse scattering transform numerical schemes for nonlinear evolution equations and the method of lines
【24h】

Inverse scattering transform numerical schemes for nonlinear evolution equations and the method of lines

机译:非线性发展方程的逆散射变换数值格式和线法

获取原文
获取原文并翻译 | 示例

摘要

In 1975, Ablowitz and Ladik derived differential difference equations that have as limiting forms the nonlinear Schrodinger, Korteweg-de Vries, modified Korteweg-de Vries, nonlinear self-dual network and Toda lattice equations. In 1992 and 1993, Taha derived differential difference equations for the higher nonlinear Schrodinger, Korteweg-de Vries, and modified Korteweg-de Vries equations. These difference equations have a number of special properties. They are constructed by methods related to the inverse scattering transform (IST) and can be used as numerical schemes for their associated nonlinear evolution equations. They maintain many of the important properties of their original partial differential equations such as infinite numbers of conservation laws and solvability by IST. Numerical experiments have shown that these schemes compare very favorably with other known numerical methods. In this paper, a survey and a method of derivation of these IST numerical schemes and an implementation of these schemes by the method of lines will be presented.
机译:1975年,Ablowitz和Ladik推导了差分差分方程,这些差分差分方程具有极限形式,包括非线性Schrodinger,Korteweg-de Vries,改进的Korteweg-de Vries,非线性自对偶网络和Toda晶格方程。在1992年和1993年,塔哈(Taha)推导了高阶非线性Schrodinger,Korteweg-de Vries和改进的Korteweg-de Vries方程的差分方程。这些差分方程具有许多特殊性质。它们是通过与逆散射变换(IST)相关的方法构造的,并且可以用作与其关联的非线性演化方程的数值方案。它们保留了其原始偏微分方程的许多重要特性,例如无穷大的守恒定律和IST的可解性。数值实验表明,这些方案与其他已知的数值方法相比非常有利。在本文中,将介绍这些IST数值方案的调查和推导方法,以及通过线法实现这些方案的方法。

著录项

  • 来源
    《Applied Numerical Mathematics》 |1996年第2期|p.181-187|共7页
  • 作者

    Thiab R. Taha;

  • 作者单位

    Computer Science Department, University of Georgia, Athens, GA 30602, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号