首页> 外文期刊>Applied numerical mathematics >An hp-version of the discontinuous Galerkin time-stepping method for Volterra integral equations with weakly singular kernels
【24h】

An hp-version of the discontinuous Galerkin time-stepping method for Volterra integral equations with weakly singular kernels

机译:具有弱奇异内核的Volterra积分方程的volterra积分方程的不连续Galerkin时间步进方法的HP版本

获取原文
获取原文并翻译 | 示例

摘要

We develop and analyze an hp-version of the discontinuous Galerkin time-stepping method for linear Volterra integral equations with weakly singular kernels. We derive a priori error bound in the L~2-norm that is fully explicit in the local time steps, the local approximation orders, and the local regularity of the exact solutions. For solutions with singular behavior near t = 0 caused by the weakly singular kernels, we prove optimal algebraic convergence rates for the h-version of the discontinuous Galerkin approximations on graded meshes. Moreover, we show that exponential rates of convergence can be achieved for solutions with start-up singularities by using geometrically refined time steps and linearly increasing approximation orders. Numerical experiments are presented to illustrate the theoretical results.
机译:我们开发和分析了具有弱奇异内核的线性Volterra积分方程的不连续Galerkin时间步进方法的HP版本。我们在L〜2常态中绑定了先验错误,该误差在本地时间步骤,本地近似订单和确切解决方案的本地规则中完全显式。对于由弱奇异内核引起的T = 0附近的奇异行为的解决方案,我们证明了在分级网格上的不连续的Galerkin近似的H-Version的最佳代数收敛速率。此外,我们表明,通过使用几何精制时间步骤和线性增加近似令,可以实现具有启动奇异性的解决方案的指数率的收敛速率。提出了数值实验以说明理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号