首页> 外文期刊>Applied numerical mathematics >A Crank-Nicolson ADI quadratic spline collocation method for two-dimensional Riemann-Liouville space-fractional diffusion equations
【24h】

A Crank-Nicolson ADI quadratic spline collocation method for two-dimensional Riemann-Liouville space-fractional diffusion equations

机译:二维黎曼 - 荔枝空间分数扩散方程的曲柄 - 尼古尔森ADI二次样条裂缝搭配方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop a Crank-Nicolson ADI quadratic spline collocation method for the approximation of two-dimensional two-sided Riemann-Liouville space-fractional diffusion equation, in which a quadratic spline collocation method combined with ADI approach is considered for the discretization of the space-fractional derivatives with orders 1 < α, β < 2, and a Crank-Nicolson method is proposed for the discretization of the first-order time derivative. The novel method is proved to be unconditionally stable for γ*(≈ 1.2576) < α, β ≤ 2. Moreover, the method is shown to be convergent with second order in time and min{3 - α,3 -β} order in space, respectively. Finally, numerical examples are attached to confirm the theoretical results.
机译:在本文中,我们开发了一种用于近似二维双面riemann-liouville空间 - 分数扩散方程的曲柄 - 尼古尔森ADI二次样条分配方法,其中二次花键搭配方法与ADI方法相结合的离散化提出了具有订单1 <α,β<2的空间分数衍生物,用于离散定期衍生物的离散化。事实证明,新的方法对于γ*(≈1.2576)<α,β≤2,该方法被示出了用第二阶及时的{3 - α,3-β}会聚。空间分别。最后,附着数值例子以确认理论结果。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号