...
首页> 外文期刊>Applied numerical mathematics >Implicit-explicit time integration of nonlinear fractional differential equations
【24h】

Implicit-explicit time integration of nonlinear fractional differential equations

机译:非线性分数微分方程的隐式显式时间集成

获取原文
获取原文并翻译 | 示例

摘要

Efficient long-time integration of nonlinear fractional differential equations is significantly challenging due to the integro-differential nature of the fractional operators. In addition, the inherent non-smoothness introduced by the inverse power-law kernels deteriorates the accuracy and efficiency of many existing numerical methods. We develop two efficient first- and second-order implicit-explicit (1MEX) methods for accurate time-integration of stiffonlinear fractional differential equations with fractional order α ∈ (0,1 ] and prove their convergence and linear stability properties. The developed methods are based on a linear multi-step fractional Adams-Moulton method (FAMM), followed by the extrapolation of the nonlinear force terms. In order to handle the singularities nearby the initial time, we employ Lubich-like corrections to the resulting fractional operators. The obtained linear stability regions of the developed IMEX methods are larger than existing IMEX methods in the literature. Furthermore, the size of the stability regions increase with the decrease of fractional order values, which is suitable for stiff problems. We also rewrite the resulting IMEX methods in the language of nonlinear Toeplitz systems, where we employ a fast inversion scheme to achieve a computational complexity of O(N logN), where N denotes the number of time-steps. Our computational results demonstrate that the developed schemes can achieve global first- and second-order accuracy for highly-oscillatory stiffonlinear problems with singularities.
机译:由于分数算子的积分微分性质,非线性分数微分方程的有效长时间集成是显着挑战。此外,逆动力法核引入的固有的非平滑度劣化了许多现有数值方法的准确性和效率。我们开发了两个高效的第一和二阶隐式(1MEX)方法,用于精确时间整合刚性/非线性分数微分方程,具有分数α∈(0,1]并证明其收敛性和线性稳定性。开发的方法基于线性的多步部分数亚当斯 - 莫尔顿法(FAMM),其次是非线性力术语的推断。为了处理初始时间附近的奇点,我们将借助于所得的分数运算符。所获得的IMEX方法的线性稳定性区域大于文献中的现有IMEX方法。此外,稳定区域的尺寸随着分数顺序值的降低而增加,这适合僵硬的问题。我们还重写了所得IMEX方法中的非线性Toeplitz系统语言,在那里我们采用快速反转方案来实现O(n logn)的计算复杂性,而是E n表示时间步长的数量。我们的计算结果表明,开发方案可以实现全局的第一和二阶精度,以获得奇点的高度振荡僵硬/非线性问题。

著录项

  • 来源
    《Applied numerical mathematics 》 |2020年第10期| 555-583| 共29页
  • 作者单位

    Applied and Computational Mathematics Division Beijing Computational Science Research Center Beijing 100193 China School of Mathematics and Statistics Huazhong University of Science and Technology Wuhan 430074 China Department of Mechanical Engineering Michigan State University East Lansing MI 48824 USA;

    Department of Mechanical Engineering Michigan State University East Lansing MI 48824 USA Department of Computational Mathematics Science and Engineering (CMSE) Michigan State University MI 48824 USA;

    School of Mathematics and Statistics Huazhong University of Science and Technology Wuhan 430074 China Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology Wuhan 430074 China;

    Department of Mechanical Engineering Michigan State University East Lansing MI 48824 USA Department of Statistics and Probability Michigan State University East Lansing MI 48824 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Stiffonlinear fractional differential equations; IMEX methods; Correction terms; Convergence; Linear stability; Toeplitz matrix;

    机译:硬/非线性分数微分方程;IMEX方法;惩戒术语;收敛;线性稳定性;Toeplitz矩阵;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号