首页> 外文期刊>Applied numerical mathematics >The Laplace equation in three dimensions by the method of fundamental solutions and the method of particular solutions
【24h】

The Laplace equation in three dimensions by the method of fundamental solutions and the method of particular solutions

机译:通过基本解决方案的方法和特定解决方案方法的三维拉普拉斯方程

获取原文
获取原文并翻译 | 示例

摘要

For Laplace's equation in a bounded simply-connected domain Ω in 3D, the method of fundamental solutions (MFS) is studied in this paper. Although some numerical computations can be found in Chen et al. [10], the theoretical analysis is much behind (Li [23] only for unit sphere Ω). Our efforts are devoted to exploring a strict error analysis of the MFS. The error bounds are derived, and the optimal polynomial convergence rates can be achieved. Numerical experiments are carried out to support the analysis made, and several useful locations of source nodes are investigated numerically. The analysis in this paper may lay a theoretical basis of the MFS for 3D problems, as Bogomolny [8] and [24] for 2D problems. Besides, the method of particular solutions (MPS) in [26] is also studied by using the spherical harmonic functions (SHF). The optimal polynomial convergence rates and the exponential growth of condition number (Cond) are obtained. The source nodes are located based on the abscissas of quadrature rules on surfaces; they are "grid-like". Since most of 3D problems, in reality, can not be simplified to 2D problems, and since the MFS has more advantages for 3D problems in algorithm simplicity and wide application, the study in this paper is essential and important to the MFS.
机译:对于3D中有界简单连接的域ω的拉普拉斯方程,本文研究了基本解决方案(MFS)的方法。虽然在Chen等人可以找到一些数值计算。 [10],理论分析很大程度上(Li [23]仅用于单位球形Ω)。我们的努力致力于探索对MFS的严格误差分析。导出误差界限,可以实现最佳多项式收敛速率。进行数值实验以支持对分析进行分析,数值上研究了几个源节点的有用位置。本文的分析可能为3D问题的MFS奠定了理论基础,例如博莫啰嗦[8]和[24]对于2D问题。此外,还通过使用球形谐波函数(SHF)研究了[26]中的特定解决方案(MPS)的方法。获得最佳多项式收敛速率和条件数量(COND)的指数增长。源节点基于表面上正交规则的横坐标;它们是“网格状”。由于大多数3D问题,实际上,不能简化到2D问题,因为MFS在算法简单和广泛应用中具有更多的3D问题优势,本文的研究对于MFS至关重要,重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号