首页> 外文期刊>Applied numerical mathematics >An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation
【24h】

An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation

机译:二维多维时间分数阶积分微分方程的交替方向隐式正交样条搭配方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new numerical approximation is discussed for the two dimensional multi-term time fractional integro-differential equation. The proposed technique is based on the high order orthogonal spline collocation (OSC) method for the spatial discretization, the classical L1 approximation for the Caputo fractional derivative, and an alternating direction implicit (ADI) method in time, combined with the second order fractional quadrature rule proposed by Lubich to approximate the integral term. Detailed analysis for the optimal error estimate of the proposed scheme is rigorously discussed. Numerical results are listed to support the theoretical analysis.
机译:在本文中,讨论了二维多维时间分数积分微分方程的新数值近似。所提出的技术基于用于空间离散化的高阶正交样条搭配(OSC)方法,Caputo分数阶导数的经典L1逼近以及及时交替方向隐式(ADI)方法,并结合了二阶分数阶求积Lubich提出的近似积分项的规则。严格讨论了所提出方案的最佳误差估计的详细分析。列出了数值结果以支持理论分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号