首页> 外文期刊>Applied numerical mathematics >An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets
【24h】

An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets

机译:一种基于分数Chelyshkov小波的改进的组合配置的分数阶微分方程组

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a new family of fractional functions based on Chelyshkov wavelets for solving one- and two-variable distributed-order fractional differential equations. The concept of fractional derivative is utilized in the Caputo sense. The idea of solving these problems is based on fractional integral operator of fractional-order Chelyshkov wavelets with composite collocation method. This operator and collocation method are utilized to reduce the solution of the distributed fractional differential equations to a system of algebraic equations. The convergence of the fractional-order Chelyshkov wavelets bases is discussed. The efficiency and the applicability of the new methodology are illustrated by eight examples, in addition our findings in comparison with the existing results show the advantage of our method. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
机译:在本文中,我们介绍了基于Chelyshkov小波的一类新的分数函数,用于求解一变量和二变量分布式分数阶微分方程。在Caputo的意义上使用了分数导数的概念。解决这些问题的思想是基于分数阶Chelyshkov小波的分数积分算子,采用复合搭配方法。该算子和搭配方法用于将分布式分数阶微分方程的解简化为代数方程组。讨论了分数阶Chelyshkov小波基的收敛性。通过八个示例说明了新方法的效率和适用性,此外,与现有结果相比,我们的发现表明了我们方法的优势。 (C)2019年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号