首页> 外文期刊>Applied numerical mathematics >Error estimates for two-scale composite finite element approximations of parabolic equations with measure data in time for convex and nonconvex polygonal domains
【24h】

Error estimates for two-scale composite finite element approximations of parabolic equations with measure data in time for convex and nonconvex polygonal domains

机译:含凸和非凸多边形区域的含测量数据的抛物方程的二阶复合有限元逼近的误差估计

获取原文
获取原文并翻译 | 示例

摘要

In this exposition we study two-scale composite finite element approximations of parabolic problems with measure data in time for both convex and nonconvex polygonal domains. This research is motivated by the work of Hackbusch and Sauter [Numer. Math., 75 (1997) 447-472] on the composite finite element approximations of elliptic boundary value problems. The main features of the composite finite element method is that, it not only uses minimal dimension of the approximation space but also handle the domain boundary in a flexible and systematic manner, which is very advantageous for domains with complicated geometry. Both spatially semidiscrete and fully discrete approximations of the proposed method are analyzed. In the case of convex domains, we derive error estimate of order O(H(Log)over tilde(1/2)(H/h) + k(1/2)) in the L-2 (0, T; L-2 (Omega))-norm, where H and h denote the coarse-scale and fine-scale mesh size, respectively, and k is the time step. Further, an error estimate of order O(H-s(Log)over tilde(s/2) (H/h) +k(1/2)), 1/2 = s = 1 is shown to hold in the L-2 (0, T; L-2(Omega))-norm for nonconvex domains. Numerical experiment confirms the theoretical findings and reveals the potential of the composite finite element method. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
机译:在这个博览会上,我们研究了凸和非凸多边形区域中具有测量数据的抛物线问题的两尺度复合有限元逼近。这项研究是由Hackbusch和Sauter [Numer。 [Math。,75(1997)447-472]上关于椭圆边界值问题的复合有限元逼近。复合有限元方法的主要特点是,它不仅使用了近似空间的最小尺寸,而且还以灵活,系统的方式处理了区域边界,这对于具有复杂几何形状的区域非常有利。分析了所提出方法的空间半离散和完全离散近似。在凸域的情况下,我们推导L-2(0,T; L)中代号(1/2)(H / h)+ k(1/2))上阶O(H(Log)的误差估计-2(Ω)-范数,其中H和h分别表示粗粒度和细粒度网格大小,k是时间步长。此外,L上的阶次为O(Hs(Log)超过波浪号(s / 2)(H / h)+ k(1/2))的误差估计保持为1/2 <= s <= 1非凸域的-2(0,T; L-2(Omega))-范数数值实验证实了理论发现,并揭示了复合有限元方法的潜力。 (C)2019年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号