首页> 外文期刊>Applied numerical mathematics >Jump-diffusion models with two stochastic factors for pricing swing options in electricity markets with partial-integro differential equations
【24h】

Jump-diffusion models with two stochastic factors for pricing swing options in electricity markets with partial-integro differential equations

机译:具有部分整数微分方程的电力市场中价格波动期权的具有两个随机因素的跳跃扩散模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider the valuation of swing options with the possibility of incorporating spikes in the underlying electricity price. This kind of contracts are modelled as path dependent options with multiple exercise rights. From the mathematical point of view the valuation of these products is posed as a sequence of free boundary problems where two consecutive exercise rights are separated by a time period. Due to the presence of jumps, the complementarity problems are associated with a partial-integro differential operator. In order to solve the pricing problem, we propose appropriate numerical methods based on a Crank-Nicolson semi-Lagrangian method for the time discretization of the differential part of the operator, jointly with the explicit treatment of the integral term by using the Adams-Bashforth scheme and combined with biquadratic Lagrange finite elements for space discretization. In addition, we use an augmented Lagrangian active set method to cope with the early exercise feature. Moreover, we employ appropriate artificial boundary conditions to treat the unbounded domain numerically. Finally, we present some numerical results in order to illustrate the proper behaviour of the numerical schemes. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
机译:在本文中,我们考虑了波动期权的估值,并可能在基础电价中加入峰值。这种合同被建模为具有多种行使权的路径依赖期权。从数学的角度来看,这些产品的估值被视为一系列自由边界问题,其中两个连续的行使权被一个时间段分开。由于存在跳跃,所以互补问题与部分整数微分算子有关。为了解决定价问题,我们提出了一种基于Crank-Nicolson半拉格朗日方法的适当数值方法,用于对运营商的微分部分进行时间离散化,并使用Adams-Bashforth对积分项进行显式处理。方案,并结合二次二次Lagrange有限元进行空间离散化。此外,我们使用增强的拉格朗日活动集方法来应对早期运动特征。此外,我们采用适当的人工边界条件对数值进行无界域处理。最后,我们给出一些数值结果,以说明数值方案的正确行为。 (C)2019年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号