首页> 外文期刊>Applied numerical mathematics >High-order quadrature rules based on spline quasi-interpolants and application to integral equations
【24h】

High-order quadrature rules based on spline quasi-interpolants and application to integral equations

机译:基于样条拟插值的高阶正交规则及其在积分方程中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a class of quadrature rules with endpoint corrections based on integrating spline quasi-interpolants. The correction weights are obtained as solutions of certain systems of linear algebraic equations. We give a comparison between the rules obtained here and the Gregory rules of the same order. Furthermore, an application of these quadrature rules to the numerical solution of Fredholm integral equations of the second kind is worked out in detail. Numerical examples illustrating the theory are given.
机译:在本文中,我们提出了一种基于积分样条拟插值的带端点校正的正交规则。获得校正权重作为某些线性代数方程组的解。我们将此处获得的规则与相同顺序的Gregory规则进行比较。此外,还详细研究了这些正交规则在第二类Fredholm积分方程的数值解中的应用。给出了说明该理论的数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号