首页> 外文期刊>Applied numerical mathematics >Iterated fast multiscale Galerkin methods for Fredholm integral equations of second kind with weakly singular kernels
【24h】

Iterated fast multiscale Galerkin methods for Fredholm integral equations of second kind with weakly singular kernels

机译:具有弱奇异核的第二类Fredholm积分方程的迭代快速多尺度Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

We propose iterated fast multiscale Galerkin methods for the second kind Fredholm integral equations with mildly weakly singular kernel by combining the advantages of fast methods and iteration post-processing methods. To study the super-convergence of these methods, we develop a theoretical framework for iterated fast multiscale schemes, and apply the scheme to integral equations with weakly singular kernels. We show theoretically that even the computational complexity is almost optimal, our schemes improve the accuracy of numerical solutions greatly, and exhibit the global super-convergence. Numerical examples are presented to illustrate the theoretical results and the efficiency of the methods.
机译:我们结合快速方法和迭代后处理方法的优点,针对具有弱弱奇异核的第二种Fredholm积分方程,提出了迭代快速多尺度Galerkin方法。为了研究这些方法的超收敛性,我们开发了迭代快速多尺度方案的理论框架,并将该方案应用于具有弱奇异核的积分方程。我们从理论上证明,即使计算复杂度几乎是最佳的,我们的方案也大大提高了数值解的精度,并表现出全局超收敛性。数值算例说明了理论结果和方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号