首页> 外文期刊>Applied numerical mathematics >Eigenvalue perturbation bounds for Hermitian block tridiagonal matrices
【24h】

Eigenvalue perturbation bounds for Hermitian block tridiagonal matrices

机译:Hermitian块三对角矩阵的特征值摄动界

获取原文
获取原文并翻译 | 示例

摘要

We derive new perturbation bounds for eigenvalues of Hermitian matrices with block tridiagonal structure. The main message of this paper is that an eigenvalue is insensitive to blockwise perturbation, if it is well-separated from the spectrum of the diagonal blocks nearby the perturbed blocks. Our bound is particularly effective when the matrix is block-diagonally dominant and graded. Our approach is to obtain eigenvalue bounds via bounding eigenvector components, which is based on the observation that an eigenvalue is insensitive to componentwise perturbation if the corresponding eigenvector components are small. We use the same idea to explain two well-known phenomena, one concerning aggressive early deflation used in the symmetric tridiagonal QR algorithm and the other concerning the extremal eigenvalues of Wilkinson matrices.
机译:我们推导出具有块三对角结构的埃尔米特矩阵特征值的新摄动界。本文的主要信息是,如果特征值与被扰动块附近对角线块的频谱很好地分开,则它对块状扰动不敏感。当矩阵是块对角主导和渐变矩阵时,边界特别有效。我们的方法是通过限制特征向量分量来获得特征值边界,这是基于以下观察:如果相应的特征向量分量较小,则特征值对逐分量摄动不敏感。我们用相同的思想来解释两个众所周知的现象,一个涉及对称三对角QR算法中使用的激进早期放气,另一个涉及Wilkinson矩阵的极值特征值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号