首页> 外文期刊>Applied numerical mathematics >Caratheodory-Toeplitz based mathematical methods and their algorithmic applications in biometric image processing
【24h】

Caratheodory-Toeplitz based mathematical methods and their algorithmic applications in biometric image processing

机译:基于Caratheodory-Toeplitz的数学方法及其算法在生物特征图像处理中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper the application of bounded series theory due to Caratheodory and Toeplitz is explored to study Brune positive real rational function (PRF). The main goal is to find the necessary and sufficient conditions for PRF coefficients. The introduced algorithms and assertions present an appropriate mathematical model derived from the developed analytical functions. The suggested solution is based on the results of Caratheodory, Toeplitz, Schur and their achievements at the beginning of the twentieth century. Toeplitz matrix lowest eigenvalues are constructed by the coefficients of the bounded power series representing Caratheodory function to establish a new simple and general algorithm for testing the nonnegativeness of real rational functions. The achieved results have shown engineering interests in two different areas of research: the electrical and mechanical circuit theory from one side and the image analysis and processing from the other side. The involvement in these methods has recently drawn the attention of researchers due to the increasing demand for simple methods of electrical and mechanical network synthesis. The author has proved the reasonability of Caratheodory-Toeplitz theory and modified it for using in other new areas of research. The most important achievements that describe relevant applications in such fields as digital filter design, speech signal and object image processing are discussed in the paper. Examples are introduced to illustrate these applications with emphasis on biometrics.
机译:本文探讨了Caratheodory和Toeplitz在有界级数理论中的应用,以研究Brune正实有理函数(PRF)。主要目标是为PRF系数找到必要和充分的条件。引入的算法和断言提供了从已开发的分析函数中得出的适当数学模型。建议的解决方案基于Caratheodory,Toeplitz,Schur的研究成果以及他们在20世纪初的成就。利用表示Caratheodory函数的有界幂级数的系数构造Toeplitz矩阵的最低特征值,以建立一种新的简单通用算法来检验真实有理函数的非负性。取得的成果表明了在两个不同研究领域的工程兴趣:一方面是电气和机械电路理论,另一方面是图像分析和处理。由于对电气和机械网络合成的简单方法的需求不断增加,最近这些方法的参与引起了研究人员的注意。作者证明了Caratheodory-Toeplitz理论的合理性,并对其进行了修改,以用于其他新的研究领域。本文讨论了描述在数字滤波器设计,语音信号和目标图像处理等领域中相关应用的最重要成就。引入示例来说明这些应用,重点是生物识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号