首页> 外文期刊>Applied numerical mathematics >Numerical analysis of cubic orthogonal spline collocation methods for the coupled Schrodinger-Boussinesq equations
【24h】

Numerical analysis of cubic orthogonal spline collocation methods for the coupled Schrodinger-Boussinesq equations

机译:Schrodinger-Boussinesq方程组三次正交样条搭配方法的数值分析

获取原文
获取原文并翻译 | 示例

摘要

In this article, we formulate two orthogonal spline collocation schemes, which consist of a nonlinear and a linear scheme for solving the coupled Schrodinger-Boussinesq equations numerically. Firstly, the conservation laws of our schemes are derived. Secondly, the existence solutions of our schemes are investigated. Thirdly, the convergence and stability of the nonlinear scheme are analyzed by means of discrete energy methods, while the convergence of the linear scheme is proved by cut-off function technique. Finally, numerical results are reported to verify our theoretical analysis for the numerical methods.
机译:在本文中,我们制定了两个正交样条搭配方案,它们由非线性和线性方案组成,用于数值求解耦合的Schrodinger-Boussinesq方程。首先,推导了我们的方案的守恒定律。其次,研究了我们的方案的存在解。第三,利用离散能量方法对非线性方案的收敛性和稳定性进行了分析,并通过截断函数技术证明了线性方案的收敛性。最后,报告了数值结果,以验证我们对数值方法的理论分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号