首页> 外文期刊>Applied numerical mathematics >An effective numerical method for solving fractional pantograph differential equations using modification of hat functions
【24h】

An effective numerical method for solving fractional pantograph differential equations using modification of hat functions

机译:用Hat函数修改求解缩放弓微分方程的有效数值方法。

获取原文
获取原文并翻译 | 示例

摘要

In this work, a spectral method based on a modification of hat functions (MHFs) is proposed to solve the fractional pantograph differential equations. Some basic properties of fractional calculus and the operational matrices of MHFs are utilized to reduce the considered problem to a system of linear algebraic equations. The greatest advantage of using MHFs is the large number of zeros in their operational matrix of fractional integration, product operational matrix and also pantograph operational matrix. This property makes these functions computationally attractive. Some illustrative examples are included to show the high performance and applicability of the proposed method and a comparison is made with the existing results. These examples confirm that the method leads to the results of convergence order O(h(3)). (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
机译:在这项工作中,提出了一种基于帽子函数(MHF)修改的频谱方法来求解分数缩放受电弓微分方程。利用分数演算的某些基本性质和MHF的运算矩阵,可以将所考虑的问题简化为线性代数方程组。使用MHF的最大优势是分数积分运算矩阵,乘积运算矩阵以及受电弓运算矩阵中都有大量零。此属性使这些函数在计算上具有吸引力。包括一些说明性示例,以显示所提出方法的高性能和适用性,并与现有结果进行比较。这些例子证实了该方法导致收敛阶数为O(h(3))。 (C)2018年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号