...
首页> 外文期刊>Applied Microbiology and Biotechnology >Microbial degradation of furanic compounds: biochemistry, genetics, and impact
【24h】

Microbial degradation of furanic compounds: biochemistry, genetics, and impact

机译:呋喃化合物的微生物降解:生物化学,遗传学和影响

获取原文
获取原文并翻译 | 示例
           

摘要

Microbial metabolism of furanic compounds, especially furfural and 5-hydroxymethylfurfural (HMF), is rapidly gaining interest in the scientific community. This interest can largely be attributed to the occurrence of toxic furanic aldehydes in lignocellulosic hydrolysates. However, these compounds are also widespread in nature and in human processed foods, and are produced in industry. Although several microorganisms are known to degrade furanic compounds, the variety of species is limited mostly to Gram-negative aerobic bacteria, with a few notable exceptions. Furanic aldehydes are highly toxic to microorganisms, which have evolved a wide variety of defense mechanisms, such as the oxidation and/or reduction to the furanic alcohol and acid forms. These oxidation/reduction reactions constitute the initial steps of the biological pathways for furfural and HMF degradation. Furfural degradation proceeds via 2-furoic acid, which is metabolized to the primary intermediate 2-oxoglutarate. HMF is converted, via 2,5-furandicarboxylic acid, into 2-furoic acid. The enzymes in these HMF/furfural degradation pathways are encoded by eight hmf genes, organized in two distinct clusters in Cupriavidus basilensis HMF14. The organization of the five genes of the furfural degradation cluster is highly conserved among microorganisms capable of degrading furfural, while the three genes constituting the initial HMF degradation route are organized in a highly diverse manner. The genetic and biochemical characterization of the microbial metabolism of furanic compounds holds great promises for industrial applications such as the biodetoxifcation of lignocellulosic hydrolysates and the production of value-added compounds such as 2,5-furandicarboxylic acid.
机译:呋喃化合物,尤其是糠醛和5-羟甲基糠醛(HMF)的微生物代谢在科学界迅速引起关注。这种兴趣在很大程度上可归因于木质纤维素水解产物中有毒的呋喃醛的出现。但是,这些化合物在自然界和人类加工食品中也很普遍,并且在工业上生产。尽管已知有几种微生物可降解呋喃化合物,但物种的种类主要限于革兰氏阴性需氧细菌,少数值得注意的例外。呋喃醛对微生物具有高毒性,微生物已经进化出多种防御机制,例如氧化和/或还原为呋喃醇和酸形式。这些氧化/还原反应构成糠醛和HMF降解的生物途径的初始步骤。糠醛降解是通过2-糠酸进行的,后者被代谢为主要的中间体2-氧戊二酸酯。 HMF通过2,5-呋喃二甲酸转化为2-糠酸。这些HMF /糠醛降解途径中的酶由八个hmf基因编码,这些基因组织在Cupriavidus basilensis HMF14的两个不同簇中。在能够降解糠醛的微生物中,糠醛降解簇的五个基因的组织高度保守,而构成初始HMF降解途径的三个基因则以高度多样化的方式组织。呋喃类化合物的微生物代谢的遗传和生化特性在工业应用中具有广阔的前景,例如木质纤维素水解产物的生物解毒和增值化合物(例如2,5-呋喃二甲酸)的生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号