首页> 外文期刊>Applied Mathematical Modelling >Online anomaly detection of profiles with varying coefficients via functional mixed effects modelling
【24h】

Online anomaly detection of profiles with varying coefficients via functional mixed effects modelling

机译:在线异常通过功能混合效果建模检测具有不同系数的曲线

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel online sequential monitoring scheme is proposed for real-time detection of anomalies in the incoming profile data. A profile data, in the present context, consists of the response affected by multiple time-dependent covariates and is subject to within-profile correlation. The proposed scheme is based on a functional mixed-effects model, where the response variable is influenced simultaneously by functional fixed-effect and random-effect terms. The baseline functional mixed-effects model is first estimated based on in-control historical profiles during appropriate Phase-Ⅰ analysis. Subsequently, a Phase-Ⅱ exponentially weighted moving average scheme is implemented using a monitoring statistic based on penalized spline smoothing for sequential monitoring of the online profile data. Theoretical results and extensive simulation studies show the effectiveness of the proposed charting scheme. Moreover, the proposed method is validated by an application example from the drying process of tobacco manufacturing. Technical details are given in the Appendix.
机译:在本文中,提出了一种新的在线顺序监测方案,用于实时检测进入配置文件数据中的异常。在本文中,简介数据包括受多个时间相关的协变量影响的响应,并且受到局部相关性的影响。所提出的方案基于功能性混合效应模型,其中响应变量通过功能固定效应和随机效应术语同时影响。首先基于适当的相位分析期间基于控制历史型材估计基线功能混合效应模型。随后,使用基于惩罚的样条平滑来实现相位-Ⅱ指数加权的移动平均方案,用于顺序监控在线配置文件数据。理论结果和广泛的仿真研究表明了建议的图表方案的有效性。此外,所提出的方法由烟草制造的干燥过程中的应用示例验证。技术细节在附录中给出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号