首页> 外文期刊>Applied Mathematical Modelling >A heuristic method for the supplier selection and order quantity allocation problem
【24h】

A heuristic method for the supplier selection and order quantity allocation problem

机译:供应商选择和订单数量分配问题的启发式方法

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the so-called supplier-selection and order-quantity allocation problem. Because of the complexity of this of problem (e.g., non-linear, discontinuous cost function), a new heuristic method is proposed and tested. This heuristic method explores the search space in a short period of time to find cheaper solutions. In order to test the efficiency of the proposed heuristic, two metaheuristic algorithms are applied: particle swarm optimization (PSO) and differential evolution (DE). Additionally, two numerical examples were solved. In the first one, it is shown that the proposed heuristic performed best compared to other solutions previously published in the literature, both in terms of computational time and total cost. The complexity analysis found that in the worst case, the proposed heuristic executes on average 99.9% less numerical operations than PSO and DE. In the second numerical example, larger instances were studied. Our findings show that the proposed heuristic was able to find a feasible solution in 15 out 15 instances, while the PSO and the DE algorithms were unable to find a solution in 9 out of 15 instances. Therefore, the proposed heuristic does not just lead to lower total cost solutions, but it also performs a more exhaustive search in shorter computational times for larger instances of the problem. Finally, Wilcoxon and Kruskal-Wallis statistical tests demonstrate significant difference between the proposed heuristic and the PSO and DE; the proposed heuristic presented a lower median in most cases.
机译:本文涉及所谓的供应商 - 选择和订单 - 数量分配问题。由于问题的复杂性(例如,非线性,不连续的成本函数),提出并测试了一种新的启发式方法。这种启发式方法在短时间内探讨了搜索空间以找到更便宜的解决方案。为了测试拟议启发式的效率,应用了两个成群质算法:粒子群优化(PSO)和差分演进(DE)。另外,解决了两个数值例子。首先,表明,与先前在文献中发表的其他解决方案的拟议启发式表现在计算时间和总成本方面最佳。复杂性分析发现,在最坏的情况下,拟议的启发式平均执行比PSO和DE的数值操作少99.9%。在第二数值示例中,研究了较大的实例。我们的调查结果表明,拟议的启发式能够在15个实例中找到可行的解决方案,而PSO和DE算法无法在15个实例中找到9个。因此,拟议的启发式不仅仅导致总成本解决方案较低,而且在更大的问题的较大实例中,它还在更短的计算时间内执行更详尽的搜索。最后,Wilcoxon和Kruskal-Wallis统计测试表现出拟议的启发式和PSO和DE之间的显着差异。在大多数情况下,拟议的启发式提出了较低的中位数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号