首页> 外文期刊>Applied Mathematical Modelling >A modified Artificial Bee Colony algorithm for structural damage identification under varying temperature based on a novel objective function
【24h】

A modified Artificial Bee Colony algorithm for structural damage identification under varying temperature based on a novel objective function

机译:一种改进的人工蜂菌落算法,用于基于新型客观函数的不同温度下的结构损伤识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a modified Artificial Bee Colony algorithm for structural damage identification. Meanwhile, the effect of temperature variation is considered and the change of temperature will lead to the alteration of Young's modulus of material. A novel objective function is proposed as the combinations of the partial mode shape curvature data, alterations of natural frequencies, and a sparse penalty term. Such an objective is found to be sensitive to structural damage while not sensitive to environmental effects. On the other hand, To render the standard Artificial Bee Colony algorithm more powerful and robustness, two local search strategies are introduced into the employed and onlooker bee phase of the Artificial Bee Colony algorithm, respectively. Two numerical examples and a laboratory verification are employed to verify the efficiency and advantage of the proposed algorithm. The final results show that the present algorithm could yield more satisfactory identification results compared with other state-of-the-art evolutionary algorithms, even high-level noise and temperature variation are considered; and the proposed novel objective function is more sensitive to structural damages, compared with the traditional mode-shape-based objective function.
机译:本文介绍了一种修改的人工蜂菌落算法,用于结构损伤识别。同时,考虑温度变化的影响,温度变化会导致杨氏模量的改变。提出了一种新颖的客观函数作为部分模式形状曲率数据,自然频率的改变以及稀疏罚则的组合。这种目的被发现对结构损伤敏感,同时对环境影响不敏感。另一方面,为了使标准人造群殖民地算法更强大且稳健,分别引入了两种本地搜索策略,分别引入了人造蜂菌落算法的采用和旁观者蜜蜂阶段。采用两个数值示例和实验室验证来验证所提出的算法的效率和优点。最终结果表明,与其他最新的进化算法相比,本算法可以产生更令人满意的识别结果,即使考虑了高级别的噪声和温度变化;与传统的基于模式的目标函数相比,所提出的新颖目标函数对结构损坏更敏感。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2020年第12期|122-141|共20页
  • 作者单位

    Department of Applied Mechanics Sun Vat-sen University Guangzhou 510006 China Centre for Infrastructural Monitoring and Protection School of Civil and Mechanical Engineering Curtin University Kent Street Bentley WA6102 Australia;

    Department of Applied Mechanics Sun Vat-sen University Guangzhou 510006 China;

    School of Internet of Things Engineering Jiangnan University Wuxi 214122 China;

    Centre for Infrastructural Monitoring and Protection School of Civil and Mechanical Engineering Curtin University Kent Street Bentley WA6102 Australia;

    Department of Applied Mechanics Sun Vat-sen University Guangzhou 510006 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Structural damage identification; Artificial Bee Colony algorithm; Modal data; Measurement noise; Temperature variations;

    机译:结构损伤识别;人造蜜蜂殖民地算法;模态数据;测量噪声;温度变化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号