首页> 外文期刊>Applied Mathematical Modelling >Multiple change-points detection by empirical Bayesian information criteria and Gibbs sampling induced stochastic search
【24h】

Multiple change-points detection by empirical Bayesian information criteria and Gibbs sampling induced stochastic search

机译:通过经验贝叶斯信息准则和Gibbs采样诱发的随机搜索进行多个变化点检测

获取原文
获取原文并翻译 | 示例

摘要

Uncovering hidden change-points in an observed signal sequence is challenging both mathematically and computationally. We tackle this by developing an innovative methodology based on Markov chain Monte Carlo and statistical information theory. It consists of an empirical Bayesian information criterion (emBIC) to assess the fitness and virtue of candidate configurations of change-points, and a stochastic search algorithm induced from Gibbs sampling to find the optimal change-points configuration. Our emBIC is derived by treating the unknown change-point locations as latent data rather than parameters as is in traditional BIC, resulting in significant improvement over the latter which is known to mostly over-detect change-points. The use of the Gibbs sampler induced search enables one to quickly find the optimal change-points configuration with high probability and without going through computationally infeasible enumeration. We also integrate the Gibbs sampler induced search with a current BIC-based change-points sequential testing method, significantly improving the method's performance and computing feasibility. We further develop two comprehensive 3-step computing procedures to implement the proposed methodology for practical use. Finally, simulation studies and real examples analyzing business and genetic data are presented to illustrate and assess the procedures. (C) 2019 Elsevier Inc. All rights reserved.
机译:在观察到的信号序列中发现隐藏的变化点在数学和计算上都具有挑战性。我们通过开发基于马尔可夫链蒙特卡洛和统计信息理论的创新方法来解决此问题。它由一个经验贝叶斯信息准则(emBIC)来评估变更点的候选配置的适用性和优点,以及一个由Gibbs抽样得出的随机搜索算法,以找到最佳的变更点配置。我们的emBIC是通过将未知的更改点位置视为潜伏数据而不是传统BIC中的参数来获得的,从而比传统的BIC有了显着改进,后者通常是过度检测更改点。吉布斯采样器诱导搜索的使用使人们能够快速找到最佳的变更点配置,而无需进行计算上不可行的枚举。我们还将Gibbs采样器诱导搜索与当前基于BIC的变更点顺序测试方法相集成,从而大大提高了该方法的性能和计算可行性。我们进一步开发了两个全面的三步计算程序,以实现建议的方法以用于实际使用。最后,提供了仿真研究和分析商业和遗传数据的实际示例,以说明和评估程序。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号