首页> 外文期刊>Applied Mathematical Modelling >n-sided polygonal hybrid finite elements with unified fundamental solution kernels for topology optimization
【24h】

n-sided polygonal hybrid finite elements with unified fundamental solution kernels for topology optimization

机译:具有统一基本解决方案内核的n边多边形混合有限元,用于拓扑优化

获取原文
获取原文并翻译 | 示例

摘要

In topology optimization, the optimized design can be obtained based on spatial discretization of design domain using natural polygonal finite elements to reduce the influence of mesh geometry on topology optimization solutions. However, the natural polygonal finite elements require separate interpolants for each type of elements and involve troublesome domain integrals. In this study, an alternativen-sided polygonal hybrid finite element possessing multiple-node connection is formulated in a unified form to compress the checkerboard patterns caused by numerical instability in topology optimization. Different from the natural polygonal finite elements, the present polygonal hybrid finite elements involve two sets of independent displacement fields. The intra-element displacement field defined inside the element is approximated by the linear combination of the fundamental solution of the problem to achieve the purpose of the local satisfaction of the governing equations of the problem, but not the specific boundary conditions and the inter-element continuity conditions. To overcome such drawback, the inter-element displacement field defined over the entire element boundary is independently approximated by means of the conventional shape function interpolation. As a result, only line integrals along the element boundary are involved in the computation, whose dimension is reduced by one compared to the domain integrals in the natural polygonal finite elements, and more importantly, allowing us to flexibly construct any polygons from Voronoi tessellations in discretizing complex design domains using same fundamental solution kernels. Numerical results obtained indicate that the presentn-sided polygonal hybrid finite elements can produce more accurate displacement solutions and smaller mean compliance, compared to the standard finite elements and the natural polygonal finite elements.
机译:在拓扑优化中,可以使用自然多边形有限元基于设计域的空间离散化来获得优化设计,以减少网格几何形状对拓扑优化解决方案的影响。但是,自然多边形有限元对于每种类型的元素都需要单独的插值,并且涉及麻烦的域积分。在这项研究中,具有多节点连接的交替面多边形混合有限元被统一表述,以压缩由拓扑优化中的数值不稳定性引起的棋盘图案。与自然多边形有限元不同,本发明的多边形混合有限元涉及两组独立的位移场。单元内部定义的单元内位移场通过问题的基本解的线性组合来近似,以达到问题的控制方程局部满足的目的,而不是特定的边界条件和单元间连续性条件。为了克服这种缺陷,在整个元素边界上定义的元素间位移场通过常规形状函数插值独立地近似。结果,仅沿元素边界的线积分参与了计算,与自然多边形有限元中的域积分相比,其维数减少了一个,更重要的是,允许我们灵活地从Voronoi镶嵌构造任意多边形。使用相同的基本解决方案内核离散化复杂的设计域。数值结果表明,与标准有限元和自然多边形有限元相比,当前侧多边形混合有限元可以产生更精确的位移解和较小的平均柔度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号