首页> 外文期刊>Applied Mathematical Modelling >A semi-analytic approach for the nonlinear dynamic response of circular plates
【24h】

A semi-analytic approach for the nonlinear dynamic response of circular plates

机译:圆板非线性动力响应的半解析方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new semi-analytic perturbation differential quadrature method for geometrically nonlinear vibration analysis of circular plates. The nonlinear governing equations are converted into a linear differential equation system by using Linstedt-Poincare perturbation method. The solutions of nonlinear dynamic response and the nonlinear free vibration are then sought through the use of differential quadrature approximation in space domain and analytical series expansion in time domain. The present method is validated against analytical results using elliptic function in several examples for both clamped and simply supported circular plates, showing that it has excellent accuracy and convergence. Compared with numerical methods involving iterative time integration, the present method does not suffer from error accumulation and is able to give very accurate results over a long time interval.
机译:本文提出了一种新的半解析微分求积法,对圆板进行几何非线性振动分析。使用Linstedt-Poincare摄动法将非线性控制方程转换为线性微分方程系统。然后通过在空间域中使用差分正交逼近和在时域中使用解析级数展开来寻找非线性动力响应和非线性自由振动的解决方案。在几个示例中,使用椭圆函数对夹紧的和简单支撑的圆形板,针对椭圆形分析结果对本方法进行了验证,表明该方法具有出色的准确性和收敛性。与涉及迭代时间积分的数值方法相比,本方法不存在误差累积,并且能够在很长的时间间隔内给出非常准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号