首页> 外文期刊>Applied Mathematical Modelling >Real-coded genetic algorithm for system identification and controller tuning
【24h】

Real-coded genetic algorithm for system identification and controller tuning

机译:用于系统识别和控制器调整的实编码遗传算法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an application of real-coded genetic algorithm (RGA) for system identification and controller tuning in process plants. The genetic algorithm is applied sequentially for system identification and controller tuning. First GA is applied to identify the changes in system parameters. Once the process parameters are identified, the optimal controller parameters are identified using GA. In the proposed genetic algorithm, the optimization variables are represented as floating point numbers. Also, cross over and mutation operators that can directly deal with the floating point numbers are used. The proposed approach has been applied for system identification and controller tuning in nonlinear pH process. The simulation results show that the GA based approach is effective in identifying the parameters of the system and the nonlinearity at various operating points in the nonlinear system.
机译:本文介绍了实码遗传算法(RGA)在过程工厂中的系统识别和控制器调试中的应用。遗传算法被顺序地应用于系统识别和控制器调整。首先应用GA来识别系统参数的变化。一旦确定了过程参数,就可以使用GA确定最佳控制器参数。在提出的遗传算法中,优化变量表示为浮点数。另外,使用了可以直接处理浮点数的交叉和变异运算符。所提出的方法已经应用于非线性pH过程中的系统识别和控制器调整。仿真结果表明,基于遗传算法的方法可以有效地识别系统参数和非线性系统各个工作点的非线性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号