首页> 外文期刊>Applied Mathematical Modelling >High accuracy cubic spline approximation for two dimensional quasi-linear elliptic boundary value problems
【24h】

High accuracy cubic spline approximation for two dimensional quasi-linear elliptic boundary value problems

机译:二维拟线性椭圆形边值问题的高精度三次样条逼近

获取原文
获取原文并翻译 | 示例

摘要

We report a new 9 point compact discretization of order two in y- and order four in x-direc-tions, based on cubic spline approximation, for the solution of two dimensional quasi-linear elliptic partial differential equations. We describe the complete derivation procedure of the method in details and also discuss how our discretization is able to handle Poisson's equation in polar coordinates. The convergence analysis of the proposed cubic spline approximation for the nonlinear elliptic equation is discussed in details and we have shown under appropriate conditions the proposed method converges. Some physical examples and their numerical results are provided to justify the advantages of the proposed method.
机译:我们基于三次样条近似,报告了一种新的9点紧凑离散化方法,用于求解y方向上的二阶和x方向上的四阶,以求解二维拟线性椭圆型偏微分方程。我们将详细描述该方法的完整推导过程,并讨论我们的离散化如何能够处理极坐标中的泊松方程。详细讨论了非线性椭圆方程的三次样条逼近的收敛性分析,并证明了在适当条件下该方法的收敛性。提供了一些物理示例及其数值结果,证明了该方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号