首页> 外文期刊>Applied Mathematical Modelling >Multi-choice mixed integer goal programming optimization for real problems in a sugar and ethanol milling company
【24h】

Multi-choice mixed integer goal programming optimization for real problems in a sugar and ethanol milling company

机译:糖和乙醇制粉公司中实际问题的多选择混合整数目标规划优化

获取原文
获取原文并翻译 | 示例

摘要

Goal Programming (GP) is an important analytical approach devised to solve many real-world problems. The first GP model is known as Weighted Goal Programming (WGP). However, Multi-Choice Aspirations Level (MCAL) problems cannot be solved by current GP techniques. In this paper, we propose a Multi-Choice Mixed Integer Goal Programming model (MCMI-GP) for the aggregate production planning of a Brazilian sugar and ethanol milling company. The MC-MIGP model was based on traditional selection and process methods for the design of lots, representing the production system of sugar, alcohol, molasses and derivatives. The research covers decisions on the agricultural and cutting stages, sugarcane loading and transportation by suppliers and, especially, energy cogeneration decisions; that is, the choice of production process, including storage stages and distribution. The MCMIGP allows decision-makers to set multiple aspiration levels for their problems in which "the more/higher, the better" and "the less/lower, the better" in the aspiration levels are addressed. An application of the proposed model for real problems in a Brazilian sugar and ethanol mill was conducted; producing interesting results that are herein reported and commented upon. Also, it was made a comparison between MCMI GP and WGP models using these real cases.
机译:目标编程(GP)是一种重要的分析方法,旨在解决许多现实问题。第一个GP模型称为加权目标规划(WGP)。但是,当前的GP技术无法解决多选择期望级别(MCAL)问题。在本文中,我们为巴西糖和乙醇制粉公司的总生产计划提出了一个多选择混合整数目标规划模型(MCMI-GP)。 MC-MIGP模型基于用于批次设计的传统选择和处理方法,代表了糖,酒精,糖蜜和衍生物的生产系统。研究涉及农业和采伐阶段的决策,供应商的甘蔗装载和运输决策,尤其是能源热电联产决策;即生产过程的选择,包括存储阶段和分配。 MCMIGP允许决策者为他们的问题设定多个期望水平,其中解决了期望水平“越高/越高越好”和“越少/越低越好”的问题。提出的模型在巴西糖和乙醇工厂中的实际问题得到了应用;产生有趣的结果,在此进行报告和评论。此外,使用这些实际案例对MCMI GP和WGP模型进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号