首页> 外文期刊>Applied Mathematical Modelling >Energy efficient voltage scheduling for multi-core processors with software controlled dynamic voltage scaling
【24h】

Energy efficient voltage scheduling for multi-core processors with software controlled dynamic voltage scaling

机译:具有软件控制的动态电压缩放功能的多核处理器的节能电压调度

获取原文
获取原文并翻译 | 示例

摘要

Energy efficient voltage scheduling for multi-core processors is an important issue in the context of parallel and distributed computing. Dynamic voltage scaling (DVS) is used to reduce the energy consumption of cores. Nowadays processor vendors are providing software for DVS. We consider a system using a single multi-core processor with software controlled DVS having a finite set of discretely available core speeds. Our contribution to this work is solving a well-known energy efficient voltage scheduling problem on the considered system. The problem that we consider is to find a minimum energy voltage scheduling for a given computational load that has to be completed within a given deadline. First we show that the existing methods to solve this problem on other processor models fail to apply on our processor model. Then we formulate an Integer Program (IP) for the problem. Through a series of reductions we reduce the IP formulation of the problem into an Integer Linear Program (ILP) formulation and prove that the proposed IP for the problem can be solved in O(D(log(max(s_(max),p) + 1) + qlog(Dp + 1)) + log(αps~3_(max)D)(2q(4q + 3)log(max(Dp, C) + 2))~a~(2q)) time where D is the given deadline, C is the amount of computation that has to be completed within the deadline of D time units, p is the number of cores, q is the number of possible core speeds, s_(max) is the maximum speed of cores, and α and a are constants.
机译:在并行和分布式计算的背景下,多核处理器的节能电压调度是一个重要的问题。动态电压缩放(DVS)用于减少内核的能耗。如今,处理器供应商正在为DVS提供软件。我们考虑一个使用单个多核处理器和软件控制的DVS的系统,该DVS具有一组有限的离散可用内核速度。我们对这项工作的贡献是在考虑的系统上解决了众所周知的节能电压调度问题。我们考虑的问题是找到必须在给定期限内完成的给定计算负载的最小能量电压调度。首先,我们证明了在其他处理器模型上解决该问题的现有方法无法应用于我们的处理器模型。然后,我们为该问题制定了一个整数程序(IP)。通过一系列的归约,我们将问题的IP公式简化为整数线性程序(ILP)公式,并证明该问题的IP可以在O(D(log(max(s((s_(max),p)) + 1)+ qlog(Dp + 1))+ log(αps〜3_(max)D)(2q(4q + 3)log(max(Dp,C)+ 2))〜a〜(2q))时间D是给定的期限,C是必须在D个时间单位的期限内完成的计算量,p是核心数,q是可能的核心速度数,s_(max)是最大速度核,α和a是常数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号